Suppr超能文献

快速廉价的微流控细胞分选器原型制作。

Rapid and cheap prototyping of a microfluidic cell sorter.

机构信息

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.

出版信息

Cytometry A. 2011 May;79(5):361-7. doi: 10.1002/cyto.a.21063. Epub 2011 Apr 13.

Abstract

Development of a microfluidic device is generally based on fabrication-design-fabrication loop, as, unlike the microelectronics design, there is no rigorous simulation-based verification of the chip before fabrication. This usually results in extremely long, and hence expensive, product development cycle if micro/nano fabrication facilities are used from the beginning of the cycle. Here, we illustrate a novel approach of device prototyping that is fast, cheap, reliable, and most importantly, this technique can be adopted even if no state-of-the-art microfabrication facility is available. A water-jet machine is used to cut the desired microfluidic channels into a thin steel plate which is then used as a template to cut the channels into a thin sheet of a transparent and cheap polymer material named Surlyn® by using a Hot Knife™. The feature-inscribed Surlyn sheet is bonded in between two microscope glass slides by utilizing the techniques which has been being used in curing polymer film between dual layer automotive glasses for years. Optical fibers are inserted from the sides of chip and are bonded by UV epoxy. To study the applicability of this prototyping approach, we made a basic microfluidic sorter and tested its functionalities. Sample containing microparticles is injected into the chip. Light from a 532-nm diode laser is coupled into the optical fiber that delivers light to the interrogation region in the channel. The emitted light from the particle is collected by a photodiode (PD) placed over the detection window. The device sorts the particles into the sorted or waste outlets depending on the level of the PD signal. We used fluorescent latex beads to test the detection and sorting functionalities of the device. We found that the system could detect all the beads that passed through its geometric observation region and could sort almost all the beads it detected.

摘要

微流控器件的开发通常基于制造-设计-制造循环,因为与微电子设计不同,在制造之前,没有严格的基于模拟的芯片验证。如果从循环开始就使用微/纳制造设施,这通常会导致非常长且昂贵的产品开发周期。在这里,我们展示了一种快速、廉价、可靠的设备原型制作新方法,最重要的是,即使没有最先进的微制造设施,也可以采用这种技术。水刀机用于将所需的微流道切割到薄钢板上,然后使用热刀将薄钢板切割成透明且廉价的聚合物材料 Surlyn®的薄片。将具有特征的 Surlyn 薄片通过多年来一直用于在双层汽车玻璃之间固化聚合物膜的技术粘合在两片显微镜载玻片之间。光纤从芯片的侧面插入,并通过 UV 环氧树脂进行粘合。为了研究这种原型制作方法的适用性,我们制作了一个基本的微流控分拣器并测试了其功能。将含有微粒子的样品注入芯片。来自 532nm 二极管激光器的光耦合到光纤中,该光纤将光传输到通道中的询问区域。放置在检测窗口上方的光电二极管 (PD) 收集粒子发出的光。该器件根据 PD 信号的水平将粒子分拣到分拣或废物出口。我们使用荧光乳胶珠测试了该设备的检测和分拣功能。我们发现,该系统可以检测通过其几何观察区域的所有珠子,并可以分拣它检测到的几乎所有珠子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验