Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA.
J Phys Chem A. 2011 Sep 1;115(34):9590-602. doi: 10.1021/jp200379m. Epub 2011 Apr 14.
The interaction of amyloid-β (Aβ) peptide with Cu(II) appears to play an important role in the etiology of Alzheimer's disease. At physiological pH, the Cu(II) coordination in Aβ is heterogeneous, and there exist at least two binding modes in which Cu(II) is coordinated by histidine residues. Electron spin resonance studies have revealed a picture of the Cu(II) binding at a higher or lower pH, where only one of the two binding modes is almost exclusively present. We describe a procedure to directly examine the coordination of Cu(II) to each histidine residue in the dominant binding mode at physiological pH. We use nonlabeled and residue-specifically (15)N-labeled Aβ(1-16). For quantitative analysis, the intensities of three-pulse electron spin-echo envelope modulation (ESEEM) spectra are analyzed. Spectral simulations show that ESEEM intensities provide information about the contribution of each histidine residue. Indeed, the ESEEM experiments at pH 6.0 confirm the dominant contribution of His6 to the Cu(II) coordination as expected from the work of other researchers. Interestingly, however, the ESEEM data obtained at pH 7.4 reveal that the contributions of the three residues to the Cu(II) coordination are in the order of His14 ≈ His6 > His13 in the dominant binding mode. The order indicates a significant contribution from the simultaneous coordination by His13 and His14 at physiological pH, which has been underappreciated. These findings are supported by hyperfine sublevel correlation spectroscopy experiments. The simultaneous coordination by the two adjacent residues is likely to be present in a non-β-sheet structure. The coexistence of different secondary structures is possibly the molecular origin for the formation of amorphous aggregates rather than fibrils at relatively high concentrations of Cu(II). Through our approach, precise and useful information about Cu(II) binding in Aβ(1-16) at physiological pH is obtained without any side-chain modification, amino acid residue replacement, or pH change, each of which might lead to an alteration in the peptide structure or the coordination environment.
淀粉样蛋白-β(Aβ)肽与 Cu(II) 的相互作用似乎在阿尔茨海默病的发病机制中起重要作用。在生理 pH 下,Aβ 中的 Cu(II) 配位是不均匀的,至少存在两种结合模式,其中 Cu(II) 由组氨酸残基配位。电子自旋共振研究揭示了在较高或较低 pH 下 Cu(II) 结合的情况,其中只有一种结合模式几乎完全存在。我们描述了一种直接检查生理 pH 下主要结合模式中 Cu(II) 与每个组氨酸残基配位的程序。我们使用未标记和残基特异性(15)N 标记的 Aβ(1-16)。为了进行定量分析,分析了三脉冲电子自旋回波包络调制(ESEEM)谱的强度。光谱模拟表明,ESEEM 强度提供了有关每个组氨酸残基贡献的信息。实际上,在 pH 6.0 下进行的 ESEEM 实验证实了 His6 对 Cu(II) 配位的主要贡献,这与其他研究人员的工作一致。然而,有趣的是,在 pH 7.4 下获得的 ESEEM 数据表明,在主要结合模式下,三个残基对 Cu(II) 配位的贡献顺序为 His14≈His6>His13。该顺序表明,在生理 pH 下,His13 和 His14 的同时配位有显著贡献,这一点被低估了。这些发现得到了超精细亚层相关光谱实验的支持。两个相邻残基的同时配位可能存在于非-β-折叠结构中。不同二级结构的共存可能是在相对较高浓度的 Cu(II) 下形成无定形聚集体而不是纤维的分子起源。通过我们的方法,在不进行侧链修饰、氨基酸残基替换或 pH 值变化的情况下,获得了 Aβ(1-16)在生理 pH 下 Cu(II) 结合的精确有用信息,这些操作中的每一种都可能导致肽结构或配位环境的改变。