文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用氧化铁-聚(L-丙交酯)纳米颗粒对间充质基质细胞进行标记用于磁共振成像:摄取、持久性、对细胞功能和磁共振成像性能的影响。

Labeling of mesenchymal stromal cells with iron oxide-poly(L-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties.

机构信息

DRK Blood Service Baden-Württemberg-Hessia, Institute for Clinical Transfusion Medicine and Immunogenetics Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.

出版信息

Cytotherapy. 2011 Sep;13(8):962-75. doi: 10.3109/14653249.2011.571246. Epub 2011 Apr 15.


DOI:10.3109/14653249.2011.571246
PMID:21492060
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3172145/
Abstract

BACKGROUND AIMS: Mesenchymal stromal cells (MSC) are the focus of research in regenerative medicine aiming at the regulatory approval of these cells for specific indications. To cope with the regulatory requirements for somatic cell therapy, novel approaches that do not interfere with the natural behavior of the cells are necessary. In this context in vivo magnetic resonance imaging (MRI) of labeled MSC could be an appropriate tool. Cell labeling for MRI with a variety of different iron oxide preparations is frequently published. However, most publications lack a comprehensive assessment of the non-interference of the contrast agent with the functionality of the labeled MSC, which is a prerequisite for the validity of cell-tracking via MRI. METHODS: We studied the effects of iron oxide-poly(l-lactide) nanoparticles in MSC with flow cytometry, transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), Prussian blue staining, CyQuant® proliferation testing, colony-forming unit-fibroblast (CFU-F) assays, flow chamber adhesion testing, immunologic tests and differentiation tests. Furthermore iron-labeled MSC were studied by MRI in agarose phantoms and Wistar rats. RESULTS: It could be demonstrated that MSC show rapid uptake of nanoparticles and long-lasting intracellular persistence in the endosomal compartment. Labeling of the MSC with these particles has no influence on viability, differentiation, clonogenicity, proliferation, adhesion, phenotype and immunosuppressive properties. They show excellent MRI properties in agarose phantoms and after subcutaneous implantation in rats over several weeks. CONCLUSIONS: These particles qualify for studying MSC homing and trafficking via MRI.

摘要

背景目的:间充质基质细胞(MSC)是再生医学研究的焦点,旨在使这些细胞获得特定适应症的监管批准。为了满足体细胞治疗的监管要求,有必要采用不会干扰细胞自然行为的新方法。在这种情况下,体内磁共振成像(MRI)对标记的 MSC 进行成像可能是一种合适的工具。用各种不同的氧化铁制剂对细胞进行 MRI 标记经常被报道。然而,大多数出版物缺乏对造影剂对标记的 MSC 功能的非干扰的全面评估,这是通过 MRI 进行细胞追踪的有效性的前提。

方法:我们使用流式细胞术、透射电子显微镜(TEM)、共聚焦激光扫描显微镜(CLSM)、普鲁士蓝染色、CyQuant®增殖检测、集落形成单位-成纤维细胞(CFU-F)检测、流动室粘附试验、免疫试验和分化试验研究了氧化铁-聚(L-丙交酯)纳米粒子对 MSC 的影响。此外,还在琼脂糖体模和 Wistar 大鼠中研究了铁标记的 MSC 的 MRI。

结果:可以证明 MSC 迅速摄取纳米颗粒,并在内涵体隔室中持久存在。用这些颗粒对 MSC 进行标记不会影响其活力、分化、集落形成能力、增殖、粘附、表型和免疫抑制特性。它们在琼脂糖体模和大鼠皮下植入数周后表现出优异的 MRI 特性。

结论:这些颗粒有资格通过 MRI 研究 MSC 归巢和迁移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/5cf30a3f1991/mcyt13-962-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/5b238352a977/mcyt13-962-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/0e158dd6f801/mcyt13-962-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/ef246e1b37eb/mcyt13-962-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/629ce87d61cf/mcyt13-962-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/e9adbe8355cc/mcyt13-962-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/c4d0403d1f96/mcyt13-962-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/95a6f04f93ea/mcyt13-962-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/5cf30a3f1991/mcyt13-962-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/5b238352a977/mcyt13-962-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/0e158dd6f801/mcyt13-962-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/ef246e1b37eb/mcyt13-962-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/629ce87d61cf/mcyt13-962-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/e9adbe8355cc/mcyt13-962-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/c4d0403d1f96/mcyt13-962-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/95a6f04f93ea/mcyt13-962-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e191/3172145/5cf30a3f1991/mcyt13-962-f8.jpg

相似文献

[1]
Labeling of mesenchymal stromal cells with iron oxide-poly(L-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties.

Cytotherapy. 2011-4-15

[2]
Efficient Labeling Of Mesenchymal Stem Cells For High Sensitivity Long-Term MRI Monitoring In Live Mice Brains.

Int J Nanomedicine. 2020-1-8

[3]
Mesenchymal stem cell labeling and in vitro MR characterization at 1.5 T of new SPIO contrast agent: Molday ION Rhodamine-B™.

Contrast Media Mol Imaging. 2010-8-5

[4]
Design of iron oxide nanoparticles with different sizes and surface charges for simple and efficient labeling of mesenchymal stem cells.

J Control Release. 2009-11-22

[5]
[In vivo MR imaging tracking of supermagnetic iron-oxide nanoparticle-labeled bone marrow mesenchymal stem cells injected into intra-articular space of knee joints: experiment with rabbit].

Zhonghua Yi Xue Za Zhi. 2007-12-4

[6]
In vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated superparamagnetic iron oxide nanoparticles using 3.0T MRI.

J Korean Med Sci. 2010-1-21

[7]
Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.

Bioconjug Chem. 2008-3

[8]
Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking.

Contrast Media Mol Imaging. 2016

[9]
Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist--an initial in vitro study.

Int J Nanomedicine. 2014-11-20

[10]
Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington's disease.

Stem Cell Res. 2012-9

引用本文的文献

[1]
Nanotechnology-Assisted Cell Tracking.

Nanomaterials (Basel). 2022-4-20

[2]
Iron Oxide Nanoparticles in Mesenchymal Stem Cell Detection and Therapy.

Stem Cell Rev Rep. 2022-10

[3]
Bone Marrow-Derived Mesenchymal Stem Cell Potential Regression of Dysplasia Associating Experimental Liver Fibrosis in Albino Rats.

Biomed Res Int. 2019-11-6

[4]
Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.

Adv Drug Deliv Rev. 2019-1-11

[5]
Neural Differentiation of Bone Marrow Mesenchymal Stem Cells Carrying the FTH1 Reporter Gene and Detection with MRI.

Biomed Res Int. 2018-6-26

[6]
Internalization of nanopolymeric tracers does not alter characteristics of placental cells.

J Cell Mol Med. 2016-6

[7]
Development of a simple procedure for the treatment of femoral head osteonecrosis with intra-osseous injection of bone marrow mesenchymal stromal cells: study of their biodistribution in the early time points after injection.

Stem Cell Res Ther. 2015-4-13

[8]
Imaging the intracellular degradation of biodegradable polymer nanoparticles.

Beilstein J Nanotechnol. 2014-10-29

[9]
Comparative in vitro study on magnetic iron oxide nanoparticles for MRI tracking of adipose tissue-derived progenitor cells.

PLoS One. 2014-9-22

[10]
Biodistribution of mesenchymal stem/stromal cells in a preclinical setting.

Stem Cells Int. 2013

本文引用的文献

[1]
In vivo MRI stem cell tracking requires balancing of detection limit and cell viability.

Cell Transplant. 2009-12-18

[2]
Durable mesenchymal stem cell labelling by using polyhedral superparamagnetic iron oxide nanoparticles.

Chemistry. 2009-11-16

[3]
Mesenchymal stem cells for clinical application.

Vox Sang. 2009-8-3

[4]
Cytokines as the major mechanism of mesenchymal stem cell clinical activity: expanding the spectrum of cell therapy.

Isr Med Assoc J. 2009-4

[5]
Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine.

J Cell Mol Med. 2009-7-10

[6]
Regenerative effects of transplanted mesenchymal stem cells in fracture healing.

Stem Cells. 2009-8

[7]
The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia.

Cytotherapy. 2009

[8]
Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles.

Angew Chem Int Ed Engl. 2009

[9]
Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase.

Cancer Res. 2009-4-1

[10]
Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability.

Cytotherapy. 2009

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索