Suppr超能文献

双相情感障碍中“自上而下”加工的损伤:一项 fMRI-GSR 的同步研究。

Impairments in "top-down" processing in bipolar disorder: a simultaneous fMRI-GSR study.

机构信息

Brain & Mind Research Institute, The University of Sydney, NSW Australia.

出版信息

Psychiatry Res. 2011 May 31;192(2):100-8. doi: 10.1016/j.pscychresns.2010.11.011. Epub 2011 Apr 14.

Abstract

Understanding the underlying neurobiology of bipolar disorder especially in the euthymic state is essential to furthering our understanding of pertinent psychiatric questions involving the observed symptomatology of the illness. In this study we investigated the mechanisms that underpin the modulation of affect in bipolar disorder to examine the contributions of cortico-limbic brain networks in the processing of affect. We employed a simultaneous functional magnetic resonance imaging and galvanic skin response methodology to investigate top-down networks in euthymic bipolar patients and healthy controls. Galvanic skin responsivity was used to partition neural epochs in which arousal pertaining to the appreciation of disgust stimuli was processed. The results of this study demonstrate that patients with bipolar disorder exhibited impairments in the recruitment of top-down brain networks and as such were unable to engage, to the same extent as matched controls, essential prefrontal processing needed to evaluate emotional salience. Partitioning top-down networks on the basis of arousal measures provided a context within which the modulation of brain networks specialised for the processing of emotion, as well as their interplay with other brain regions including the frontal lobes, could be studied.

摘要

了解双相情感障碍的潜在神经生物学,特别是在病情稳定期,对于进一步理解涉及该疾病观察到的症状的相关精神科问题至关重要。在这项研究中,我们调查了调节双相情感障碍中情绪的机制,以检查皮质边缘脑网络在情绪处理中的贡献。我们采用同时进行的功能磁共振成像和皮肤电反应方法,研究病情稳定的双相情感障碍患者和健康对照组中的自上而下的网络。皮肤电反应用于划分处理厌恶刺激的唤醒相关神经时程。这项研究的结果表明,双相情感障碍患者表现出自上而下的大脑网络招募受损,因此无法像匹配的对照组那样,充分参与评估情绪显著性所需的关键前额叶处理。基于唤醒测量对自上而下的网络进行分区,为研究专门用于处理情绪的大脑网络的调节及其与包括额叶在内的其他大脑区域的相互作用提供了一个背景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验