Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, Québec, Canada.
Physiol Meas. 2011 Jun;32(6):619-35. doi: 10.1088/0967-3334/32/6/001. Epub 2011 Apr 15.
The QT interval in the electrocardiogram (ECG) is a measure of total duration of depolarization and repolarization. Correction for heart rate is necessary to provide a single intrinsic physiological value that can be compared between subjects and within the same subject under different conditions. Standard formulas for the corrected QT (QTc) do not fully reproduce the complexity of the dependence in the preceding interbeat intervals (RR) and inter-subject variability. In this paper, a subject-specific, nonlinear, transfer function-based correction method is formulated to compute the QTc from Holter ECG recordings. The model includes five parameters: three describing the static QT-RR relationship and two representing memory/hysteresis effects that intervene in the calculation of effective RR values. The parameter identification procedure is designed to minimize QTc fluctuations and enforce zero correlation between QTc and effective RR. Weighted regression is used to better handle unbalanced or skewed RR distributions. The proposed optimization approach provides a general mathematical framework for further extensions of the model. Validation, robustness evaluation and comparison with existing QT correction formulas is performed on ECG signals recorded during sinus rhythm, atrial pacing, tilt-table tests, stress tests and atrial flutter (29 subjects in total). The resulting average modeling error on the QTc is 4.9 ± 1.1 ms with a sampling interval of 2 ms, which outperforms correction formulas currently used. The results demonstrate the benefits of subject-specific rate correction and hysteresis reduction.
心电图(ECG)中的 QT 间期是去极化和复极总持续时间的度量。为了提供可在受试者之间以及在不同条件下的同一受试者内进行比较的单个内在生理值,有必要对心率进行校正。校正 QT(QTc)的标准公式不能完全再现前间心率(RR)的依赖性和受试者间变异性的复杂性。在本文中,提出了一种基于个体特异性、非线性、传递函数的校正方法,从动态心电图记录中计算 QTc。该模型包括五个参数:三个参数描述静态 QT-RR 关系,两个参数表示记忆/滞后效应,这些效应干预有效 RR 值的计算。参数识别过程旨在最小化 QTc 的波动,并使 QTc 与有效 RR 之间的相关性为零。加权回归用于更好地处理不平衡或偏态 RR 分布。所提出的优化方法为模型的进一步扩展提供了一个通用的数学框架。在窦性节律、心房起搏、倾斜台试验、应激试验和心房扑动(总共 29 名受试者)期间记录的 ECG 信号上进行了验证、鲁棒性评估和与现有 QT 校正公式的比较。在 2ms 的采样间隔下,QTc 的平均建模误差为 4.9±1.1ms,优于当前使用的校正公式。结果表明了个体特异性的心率校正和滞后降低的好处。