Suppr超能文献

利用天气研究与预报(WRF)模型输出预测花生早斑病的有利条件。

Predicting favorable conditions for early leaf spot of peanut using output from the Weather Research and Forecasting (WRF) model.

机构信息

Department of Biological and Agricultural Engineering University of Georgia, University of Georgia, Griffin, GA 30223, USA.

出版信息

Int J Biometeorol. 2012 Mar;56(2):259-68. doi: 10.1007/s00484-011-0425-6. Epub 2011 Apr 16.

Abstract

Early leaf spot of peanut (Arachis hypogaea L.), a disease caused by Cercospora arachidicola S. Hori, is responsible for an annual crop loss of several million dollars in the southeastern United States alone. The development of early leaf spot on peanut and subsequent spread of the spores of C. arachidicola relies on favorable weather conditions. Accurate spatio-temporal weather information is crucial for monitoring the progression of favorable conditions and determining the potential threat of the disease. Therefore, the development of a prediction model for mitigating the risk of early leaf spot in peanut production is important. The specific objective of this study was to demonstrate the application of the high-resolution Weather Research and Forecasting (WRF) model for management of early leaf spot in peanut. We coupled high-resolution weather output of the WRF, i.e. relative humidity and temperature, with the Oklahoma peanut leaf spot advisory model in predicting favorable conditions for early leaf spot infection over Georgia in 2007. Results showed a more favorable infection condition in the southeastern coastline of Georgia where the infection threshold were met sooner compared to the southwestern and central part of Georgia where the disease risk was lower. A newly introduced infection threat index indicates that the leaf spot threat threshold was met sooner at Alma, GA, compared to Tifton and Cordele, GA. The short-term prediction of weather parameters and their use in the management of peanut diseases is a viable and promising technique, which could help growers make accurate management decisions, and lower disease impact through optimum timing of fungicide applications.

摘要

花生早疫病(Arachis hypogaea L.)是一种由 Cercospora arachidicola S. Hori 引起的疾病,仅在美国东南部地区,每年就会因此损失数百万美元。花生早疫病的发生和 C. arachidicola 孢子的传播依赖于有利的天气条件。准确的时空天气信息对于监测有利条件的进展和确定疾病的潜在威胁至关重要。因此,开发一种用于减轻花生早疫病风险的预测模型非常重要。本研究的具体目标是展示高分辨率天气研究与预报(WRF)模型在管理花生早疫病中的应用。我们将 WRF 的高分辨率天气输出(即相对湿度和温度)与俄克拉荷马州花生叶斑病咨询模型相结合,预测 2007 年佐治亚州早疫病感染的有利条件。结果表明,佐治亚州东南沿海地区的感染条件更为有利,感染阈值比佐治亚州西南部和中部地区更早达到,这些地区的疾病风险较低。一个新引入的感染威胁指数表明,与佐治亚州的蒂夫顿和科尔德尔相比,佐治亚州的阿尔玛地区的叶斑病威胁阈值更早达到。天气参数的短期预测及其在花生病害管理中的应用是一种可行且有前途的技术,它可以帮助种植者做出准确的管理决策,并通过最佳的杀菌剂施用时间降低病害的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验