Department of Plant Pathology, The University of Georgia, Tifton, GA 31793.
Department of Plant Pathology, Kansas State University, Manhattan, KS 66506.
Plant Dis. 2019 Dec;103(12):3226-3233. doi: 10.1094/PDIS-10-18-1782-RE. Epub 2019 Sep 30.
Previous research has demonstrated the efficacy of prescription fungicide programs, based upon Peanut Rx, to reduce combined effects of early leaf spot (ELS), caused by (), and late leaf spot (LLS), caused by (syn. ), but the potential of Peanut Rx to predict each disease has never been formally evaluated. From 2010 to 2016, non-fungicide-treated peanut plots in Georgia and Florida were sampled to monitor the development of ELS and LLS. This resulted in 168 cases (unique combinations of Peanut Rx risk factors) with associated total leaf spot risk points ranging from 40 to 100. Defoliation ranged from 13.9 to 100%, and increased significantly with increasing total risk points (conditional R = 0.56; < 0.001). Leaf spot onset (time in days after planting [DAP] when either leaf spot reached 1% lesion incidence), ELS onset, and LLS onset ranged from 29 to 140, 29 to 142, and 50 to 143 DAP, respectively, and decreased significantly with increasing risk points. Standardized AUDPC of ELS was significantly affected by risk points (conditional R = 0.53, < 0.001), but not for LLS. After removing redundant Peanut Rx factors, planting date, rotation, historical leaf spot prevalence, cultivar, and field history were used as fixed effects in mixed effect regression models to evaluate their contribution to leaf spot, ELS or LLS prediction. Results from mixed effects regression confirmed that the selected Peanut Rx risk factors contributed to the variability of at least one measurement of development of combined or separate epidemics of ELS and LLS, but not all factors affected ELS and LLS equally. Historical leaf spot prevalence, a new potential preplant risk factor, was a consistent predictor of the dominant disease(s) observed in the field. Results presented here demonstrate that Peanut Rx is a very effective tool for predicting leaf spot onset regardless of which leaf spot is predominant, but also suggest that associated risk does not reflect the same development for each disease. These data will be useful for refining thresholds for differentiating high, moderate, and low risk fields, and reevaluating the timing of fungicide applications in reduced input programs with respect to disease onset.
先前的研究已经证明了基于 Peanut Rx 的处方杀菌剂方案在减少早期叶斑病(ELS)和晚期叶斑病(LLS)综合影响方面的功效,ELS 由 () 引起,LLS 由 () 引起(syn. ),但 Peanut Rx 预测每种疾病的潜力从未得到正式评估。2010 年至 2016 年,在佐治亚州和佛罗里达州,对未使用杀菌剂的花生田进行了采样,以监测 ELS 和 LLS 的发展情况。这导致了 168 个病例(Peanut Rx 风险因素的独特组合),其总叶斑风险点从 40 到 100 不等。落叶率从 13.9%到 100%不等,并且随着总风险点的增加而显著增加(条件 R = 0.56;<0.001)。叶斑病发病时间(从种植后达到 1%病斑发病率的天数[DAP]),ELS 发病时间和 LLS 发病时间分别为 29 至 140、29 至 142 和 50 至 143 DAP,且随着风险点的增加而显著降低。ELS 的标准化 AUDPC 显著受风险点影响(条件 R = 0.53,<0.001),但对 LLS 无影响。在去除冗余的 Peanut Rx 因素后,种植日期、轮作、历史叶斑病流行率、品种和田间历史被用作混合效应回归模型中的固定效应,以评估它们对叶斑病、ELS 或 LLS 预测的贡献。混合效应回归结果证实,所选的 Peanut Rx 风险因素至少对 ELS 和 LLS 综合或单独流行的一个测量值的变化有贡献,但并非所有因素对 ELS 和 LLS 的影响都是均等的。历史叶斑病流行率,一个新的潜在的种植前风险因素,是田间主要疾病的一致预测因子。本研究结果表明,Peanut Rx 是一种非常有效的预测叶斑病发病时间的工具,无论哪种叶斑病占主导地位,但也表明相关风险并不反映每种疾病的相同发展情况。这些数据将有助于细化区分高、中、低风险田的阈值,并重新评估在减少投入方案中,根据疾病发病时间进行杀菌剂施药的时间。