Human Molecular Genetics Group, Institut d’Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.
Stem Cells Dev. 2012 Jan 20;21(2):284-95. doi: 10.1089/scd.2010.0483. Epub 2011 Jun 1.
Prenatal transplantation of genetically engineered mesenchymal stem cells (MSCs) might benefit prevention or treatment of early-onset genetic disorders due to the cells' intrinsic regenerative potential plus the acquired advantage from therapeutic transgene expression. However, a thorough assessment of the safety, accessibility, and behavior of these MSCs in the fetal environment using appropriate animal models is required before we can advance toward a clinical application. We have recently shown that fetal rabbit liver MSCs (fl-MSCs) have superior growth rate, clonogenic capability, and in vitro adherence and differentiation abilities compared with adult rabbit bone marrow MSCs. In this follow-up study, we report safe and widespread distribution of recombinant pSF-EGFP retrovirus-transduced fl-MSCs (EGFP(+)-fl-MSCs) in neonatal rabbit tissues at 10 days after fetal allogeneic transplantation through both intrahepatic and intra-amniotic administration. Conversely, a more restricted biodistribution pattern according to the route of administration was apparent in the young rabbits intervened at 16 weeks after fetal EGFP(+)-fl-MSC transplantation. Furthermore, the presence of these cells in the recipients' tissues, tracked with the reporter provirus, was inversely related to the developmental stage of the fetuses at the time of intervention. Long-term engraftment was confirmed both by fluorescence in situ hybridization analysis on touch tissue imprints using a chromosome Y-specific BAC probe, and by immunohistochemical localization of EGFP expression. Finally, there was no evidence of immune responses against the transplanted EGFP(+)-fl-MSCs or the EGFP transgenic product in the treated young rabbits. Thus, cell transplantation approaches using genetically engineered fetal MSCs may prove particularly valuable to frontier medical treatments for congenital birth defects in perinatology.
产前移植基因工程间充质干细胞(MSCs)可能有益于预防或治疗早发性遗传疾病,因为这些细胞具有内在的再生潜力,加上治疗性转基因表达获得的优势。然而,在我们能够推进临床应用之前,需要使用适当的动物模型对这些 MSC 在胎儿环境中的安全性、可及性和行为进行全面评估。我们最近表明,与成年兔骨髓 MSC 相比,胎兔肝 MSC(fl-MSCs)具有更高的生长速度、集落形成能力以及体外黏附和分化能力。在这项后续研究中,我们报告了通过肝内和羊膜内给药,重组 pSF-EGFP 逆转录病毒转导的 fl-MSCs(EGFP(+)-fl-MSCs)在胎兔同种异体移植后 10 天内可安全且广泛分布于新生兔组织中。相反,在胎兔 EGFP(+)-fl-MSC 移植后 16 周干预的幼兔中,根据给药途径,生物分布模式更为受限。此外,这些细胞在受体组织中的存在,通过报告基因前病毒进行追踪,与干预时胎儿的发育阶段呈反比。通过使用染色体 Y 特异性 BAC 探针对组织印迹进行荧光原位杂交分析,以及通过 EGFP 表达的免疫组织化学定位,均证实了长期植入。最后,在接受治疗的幼兔中,没有证据表明对移植的 EGFP(+)-fl-MSCs 或 EGFP 转基因产物存在免疫反应。因此,使用基因工程胎儿 MSC 的细胞移植方法可能对围产医学中先天性出生缺陷的前沿医学治疗特别有价值。