Suppr超能文献

分次内摆位变异性:在分次治疗患者人群中,IR 光学定位与 X 射线成像的比较。

Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population.

机构信息

Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, Italy.

出版信息

Radiat Oncol. 2011 Apr 15;6:38. doi: 10.1186/1748-717X-6-38.

Abstract

BACKGROUND

The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging.

METHOD AND MATERIALS

We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion.

RESULTS

According to optical measurements, the size of intra-fraction motion was (median ± quartile) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly.

CONCLUSION

Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques.

摘要

背景

本研究旨在通过集成红外光学定位和立体千伏 X 射线成像来研究分次头部和全身放疗中的分次内摆位变异性。

方法和材料

我们分析了 87 例接受分次头部和颅外部位放疗的患者的数据。患者的摆位通过 ExacTrac X 射线 6D 系统(德国 BrainLAB)实现,该系统包括 2 个用于外部基准定位的红外电视摄像机和用于图像配准的双投影 X 射线成像。在照射前,患者依赖光学标记定位进行预对齐。通过自动匹配 X 射线图像到数字重建射线照片,患者位置通过 6 个校正参数进行精调,这些参数通过机器人治疗床自动应用。在治疗结束时进行红外患者定位和 X 射线成像,从而提供分次内运动的独立测量。

结果

根据光学测量,分次内运动的大小(中位数±四分位数)分别为头部、腹部和肺部患者的 0.3±0.3mm、0.6±0.6mm 和 0.7±0.6mm。X 射线图像配准估计的分次内运动更大,分别为 0.9±0.8mm、1.3±1.2mm 和 1.8±2.2mm。

结论

光学跟踪在头部和颅外部位均显示出可忽略的分次内运动。X 射线图像配准检测到的更大运动表现出显著的患者间变异性,与红外光学跟踪测量形成对比。红外定位被提出作为监测分次内运动的最佳策略,具有相对于基于 X 射线的技术的稳健性、灵活性和较低的侵入性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/228c/3096920/353d4d24cb8d/1748-717X-6-38-1.jpg

相似文献

2
Comparison between infrared optical and stereoscopic X-ray technologies for patient setup in image guided stereotactic radiotherapy.
Int J Radiat Oncol Biol Phys. 2012 Apr 1;82(5):1706-14. doi: 10.1016/j.ijrobp.2011.04.004. Epub 2011 May 24.
3
Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy.
Med Dosim. 2008 Summer;33(2):124-34. doi: 10.1016/j.meddos.2008.02.005. Epub 2008 Apr 1.

引用本文的文献

2
Failure mode and effect analysis for linear accelerator-based paraspinal stereotactic body radiotherapy.
J Appl Clin Med Phys. 2021 Dec;22(12):87-96. doi: 10.1002/acm2.13455. Epub 2021 Oct 28.
3
A retrospective analysis of setup and intrafraction positional variation in stereotactic radiotherapy treatments.
J Appl Clin Med Phys. 2020 Dec;21(12):109-119. doi: 10.1002/acm2.13076. Epub 2020 Nov 3.
7
Spatial and rotational quality assurance of 6DOF patient tracking systems.
Med Phys. 2016 Jun;43(6):2785-2793. doi: 10.1118/1.4948506.
8
Development of a 6DOF robotic motion phantom for radiation therapy.
Med Phys. 2014 Dec;41(12):121704. doi: 10.1118/1.4900828.
9
Study of ExacTrac X-ray 6D IGRT setup uncertainty for marker-based prostate IMRT treatment.
J Appl Clin Med Phys. 2012 May 10;13(3):3757. doi: 10.1120/jacmp.v13i3.3757.

本文引用的文献

2
Electromagnetic tracking of intrafraction prostate displacement in patients externally immobilized in the prone position.
Int J Radiat Oncol Biol Phys. 2010 Jun 1;77(2):490-5. doi: 10.1016/j.ijrobp.2009.05.033. Epub 2009 Sep 21.
3
Accuracy in breast shape alignment with 3D surface fitting algorithms.
Med Phys. 2009 Apr;36(4):1193-8. doi: 10.1118/1.3086079.
4
Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy.
Phys Med Biol. 2009 Feb 21;54(4):981-92. doi: 10.1088/0031-9155/54/4/011. Epub 2009 Jan 16.
5
Anatomical imaging for radiotherapy.
Phys Med Biol. 2008 Jun 21;53(12):R151-91. doi: 10.1088/0031-9155/53/12/R01. Epub 2008 May 21.
6
Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy.
Med Dosim. 2008 Summer;33(2):124-34. doi: 10.1016/j.meddos.2008.02.005. Epub 2008 Apr 1.
7
Developing quality assurance processes for image-guided adaptive radiation therapy.
Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S28-32. doi: 10.1016/j.ijrobp.2007.08.082.
8
Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation.
Int J Radiat Oncol Biol Phys. 2008 Mar 15;70(4):1239-46. doi: 10.1016/j.ijrobp.2007.11.020. Epub 2008 Jan 22.
9
Innovations in image-guided radiotherapy.
Nat Rev Cancer. 2007 Dec;7(12):949-60. doi: 10.1038/nrc2288.
10
Radiation medicine practice in the image-guided radiation therapy era: new roles and new opportunities.
Semin Radiat Oncol. 2007 Oct;17(4):298-305. doi: 10.1016/j.semradonc.2007.07.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验