Suppr超能文献

正常和肿瘤非干细胞可以自发地转化为干细胞样状态。

Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state.

机构信息

Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 May 10;108(19):7950-5. doi: 10.1073/pnas.1102454108. Epub 2011 Apr 15.

Abstract

Current models of stem cell biology assume that normal and neoplastic stem cells reside at the apices of hierarchies and differentiate into nonstem progeny in a unidirectional manner. Here we identify a subpopulation of basal-like human mammary epithelial cells that departs from that assumption, spontaneously dedifferentiating into stem-like cells. Moreover, oncogenic transformation enhances the spontaneous conversion, so that nonstem cancer cells give rise to cancer stem cell (CSC)-like cells in vitro and in vivo. We further show that the differentiation state of normal cells-of-origin is a strong determinant of posttransformation behavior. These findings demonstrate that normal and CSC-like cells can arise de novo from more differentiated cell types and that hierarchical models of mammary stem cell biology should encompass bidirectional interconversions between stem and nonstem compartments. The observed plasticity may allow derivation of patient-specific adult stem cells without genetic manipulation and holds important implications for therapeutic strategies to eradicate cancer.

摘要

目前的干细胞生物学模型假设正常和肿瘤干细胞位于层次结构的顶端,并以单向方式分化为非干细胞后代。在这里,我们鉴定出一种基底样人乳腺上皮细胞亚群,其偏离了这一假设,自发去分化为干细胞样细胞。此外,致癌转化增强了自发转化,使得非干细胞癌细胞在体外和体内产生癌症干细胞(CSC)样细胞。我们进一步表明,正常细胞起源的分化状态是转化后行为的一个重要决定因素。这些发现表明,正常和 CSC 样细胞可以从头从更分化的细胞类型中产生,并且乳腺干细胞生物学的层次模型应该包含干细胞和非干细胞隔室之间的双向相互转化。观察到的可塑性可以允许在没有遗传操作的情况下获得患者特异性成体干细胞,并对根除癌症的治疗策略具有重要意义。

相似文献

1
Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7950-5. doi: 10.1073/pnas.1102454108. Epub 2011 Apr 15.
2
The epithelial-mesenchymal transition generates cells with properties of stem cells.
Cell. 2008 May 16;133(4):704-15. doi: 10.1016/j.cell.2008.03.027.
4
Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis.
J Clin Invest. 2012 Jun;122(6):2066-78. doi: 10.1172/JCI59735. Epub 2012 May 15.
5
7
Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer.
J Mammary Gland Biol Neoplasia. 2010 Jun;15(2):235-52. doi: 10.1007/s10911-010-9175-z. Epub 2010 Jun 4.
9
Role of epithelial stem/progenitor cells in mammary cancer.
Gene Expr. 2011;15(3):133-40. doi: 10.3727/105221611x13176664479368.
10
CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis.
Br J Cancer. 2008 Feb 26;98(4):756-65. doi: 10.1038/sj.bjc.6604242. Epub 2008 Feb 12.

引用本文的文献

3
The role of SOX transcription factors in prostate cancer: Focusing on SOX2.
Genes Dis. 2025 May 21;12(6):101692. doi: 10.1016/j.gendis.2025.101692. eCollection 2025 Nov.
4
Tfcp2l1 as a central integrator of hypoxia, dedifferentiation, and tumor progression.
J Exp Clin Cancer Res. 2025 Aug 14;44(1):236. doi: 10.1186/s13046-025-03501-9.
5
PSMG2 role in tumorigenesis and stemness mediated by protein accumulation, reticulum stress and autophagy.
Int J Biol Sci. 2025 Mar 21;21(6):2531-2549. doi: 10.7150/ijbs.105263. eCollection 2025.
7
Epithelial cell-fate switch triggering ectopic ligand-receptor-mediated JAK-STAT signaling promotes tumorigenesis in .
iScience. 2025 Mar 10;28(4):112191. doi: 10.1016/j.isci.2025.112191. eCollection 2025 Apr 18.
8
Expression of EZH2 and Fatty Acid Synthase in Breast Tissues From Healthy Women With Breast Cancer Risk Factors.
Appl Immunohistochem Mol Morphol. 2025 May 1;33(3):186-192. doi: 10.1097/PAI.0000000000001250. Epub 2025 Apr 4.
9
The end of the genetic paradigm of cancer.
PLoS Biol. 2025 Mar 18;23(3):e3003052. doi: 10.1371/journal.pbio.3003052. eCollection 2025 Mar.

本文引用的文献

1
Stem cells in cancer: instigators and propagators?
J Cell Sci. 2010 Jul 15;123(Pt 14):2357-68. doi: 10.1242/jcs.054296.
2
Nuclear reprogramming to a pluripotent state by three approaches.
Nature. 2010 Jun 10;465(7299):704-12. doi: 10.1038/nature09229.
3
Emerging use of stem cells in regenerative medicine.
Biochem J. 2010 Apr 28;428(1):11-23. doi: 10.1042/BJ20100102.
5
Identification of selective inhibitors of cancer stem cells by high-throughput screening.
Cell. 2009 Aug 21;138(4):645-659. doi: 10.1016/j.cell.2009.06.034. Epub 2009 Aug 13.
7
ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays.
J Immunol Methods. 2009 Aug 15;347(1-2):70-8. doi: 10.1016/j.jim.2009.06.008. Epub 2009 Jun 28.
8
Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells.
Cancer Cell. 2009 Jun 2;15(6):501-13. doi: 10.1016/j.ccr.2009.03.018.
9
Myeloid-derived suppressor cells as regulators of the immune system.
Nat Rev Immunol. 2009 Mar;9(3):162-74. doi: 10.1038/nri2506.
10
Wnt signaling, lgr5, and stem cells in the intestine and skin.
Am J Pathol. 2009 Mar;174(3):715-21. doi: 10.2353/ajpath.2009.080758. Epub 2009 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验