Laboratory for Computational Biology and Bioinformatics, School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Genome Biol Evol. 2011;3:413-23. doi: 10.1093/gbe/evr030. Epub 2011 Apr 17.
Coevolutionary networks can encapsulate information about the dynamics of presence and absence of gene families in organisms. Analysis of such networks should reveal fundamental principles underlying the evolution of cellular systems and the functionality of sets of genes. In this study, we describe a new approach for analyzing coevolutionary networks. Our method detects Mutually Exclusive Orthologous Modules (MEOMs). A MEOM is composed of two sets of gene families, each including gene families that tend to appear in the same organisms, such that the two sets tend to mutually exclude each other (if one set appears in a certain organism the second set does not). Thus, a MEOM reflects the evolutionary replacement of one set of genes by another due to reasons such as lineage/environmental specificity, incompatibility, or functional redundancy. We use our method to analyze a coevolutionary network that is based on 383 microorganisms from the three domains of life. As we demonstrate, our method is useful for detecting meaningful evolutionary clades of organisms as well as sets of proteins that interact with each other. Among our results, we report that: 1) MEOMs tend to include gene families whose cellular functions involve transport, energy production, metabolism, and translation, suggesting that changes in the metabolic environments that require adaptation to new sources of energy are central triggers of complex/pathway replacement in evolution. 2) Many MEOMs are related to outer membrane proteins, such proteins are involved in interaction with the environment and could thus be replaced as a result of adaptation. 3) MEOMs tend to separate organisms with large phylogenetic distance but they also separate organisms that live in different ecological niches. 4) Strikingly, although many MEOMs can be identified, there are much fewer cases where the two cliques in the MEOM completely mutually exclude each other, demonstrating the flexibility of protein evolution. 5) CO dehydrogenase and thymidylate synthase and the glycine cleavage genes mutually exclude each other in archaea; this may represent an alternative route for generation of methyl donors for thymidine synthesis.
共进化网络可以封装有关基因家族在生物中存在和缺失动态的信息。对这些网络的分析应该揭示细胞系统进化和基因集功能的基本原理。在这项研究中,我们描述了一种分析共进化网络的新方法。我们的方法检测到相互排斥的直系同源模块(MEOMs)。MEOM 由两组基因家族组成,每组基因家族都包含倾向于出现在同一生物体中的基因家族,使得两组基因家族倾向于相互排斥(如果一组出现在某个生物体中,那么第二组就不会出现)。因此,MEOM 反映了由于谱系/环境特异性、不兼容性或功能冗余等原因,一组基因被另一组基因取代的进化过程。我们使用我们的方法来分析基于生命的三个领域的 383 种微生物的共进化网络。正如我们所证明的,我们的方法对于检测生物体有意义的进化分支以及相互作用的蛋白质集非常有用。在我们的结果中,我们报告了以下几点:
MEOM 倾向于包含其细胞功能涉及运输、能量产生、代谢和翻译的基因家族,这表明需要适应新的能源来源的代谢环境的变化是进化中复杂/途径替换的核心触发因素。
许多 MEOM 与外膜蛋白有关,这些蛋白质参与与环境的相互作用,因此可能会由于适应而被取代。
MEOM 倾向于将具有大系统发育距离的生物体分开,但它们也将生活在不同生态位的生物体分开。
引人注目的是,尽管可以识别出许多 MEOM,但在 MEOM 中的两个派系完全相互排斥的情况下要少得多,这表明蛋白质进化具有灵活性。
古菌中的 CO 脱氢酶和胸苷酸合酶以及甘氨酸裂解基因相互排斥;这可能代表用于胸苷合成的甲基供体生成的替代途径。