Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. #0657, La Jolla, CA 92093, USA.
Drug Metab Dispos. 2011 Jul;39(7):1113-21. doi: 10.1124/dmd.111.039719. Epub 2011 Apr 18.
This article reviews work from the author dating back to 1978 and focuses on the structural basis of cytochrome P450 (P450) function using available contemporary techniques. Early studies used mechanism-based inactivators that bound to the protein moiety of hepatic P450s to try to localize the active site. Subsequent studies used cDNA cloning, heterologous expression, site-directed mutagenesis, and homology modeling based on multiple bacterial P450 X-ray crystal structures to predict the active sites of CYP2B enzymes with considerable accuracy. Breakthroughs in engineering and expression of mammalian P450s enabled us to determine our first X-ray crystal structure of ligand-free rabbit CYP2B4. To date, we have solved 11 CYP2B4 and three human CYP2B6 structures, which represent four significantly different conformations. The plasticity of CYP2B4 has been confirmed by deuterium exchange mass spectrometry and is substantiated by molecular dynamics simulations. In addition to major movement of secondary structure elements, more subtle reorientation of active site side chains, especially Phe206, Phe297, and Glu301, contributes to the ability of CYP2B enzymes to bind various ligands. Isothermal titration calorimetry has proven to be a useful tool for studying the thermodynamics of ligand binding to CYP2B4 and CYP2B6, and NMR has enabled study of ligand binding orientation in solution as an adjunct to X-ray crystallography. A major challenge remains to harness the power of the various approaches to facilitate prediction of CYP2B specificity and inhibition.
这篇文章回顾了作者自 1978 年以来的工作,重点介绍了利用现有当代技术研究细胞色素 P450(P450)功能的结构基础。早期的研究使用与肝 P450 蛋白部分结合的基于机制的失活剂,试图定位活性部位。随后的研究使用 cDNA 克隆、异源表达、定点突变和基于多个细菌 P450 X 射线晶体结构的同源建模,相当准确地预测 CYP2B 酶的活性部位。哺乳动物 P450 的工程和表达的突破使我们能够确定我们第一个配体自由兔 CYP2B4 的 X 射线晶体结构。迄今为止,我们已经解决了 11 个 CYP2B4 和 3 个人 CYP2B6 结构,代表了四种截然不同的构象。CYP2B4 的可塑性已通过氘交换质谱法得到证实,并通过分子动力学模拟得到证实。除了二级结构元件的主要运动外,活性部位侧链更微妙的重新定向,特别是 Phe206、Phe297 和 Glu301,有助于 CYP2B 酶结合各种配体的能力。等温滴定量热法已被证明是研究 CYP2B4 和 CYP2B6 配体结合热力学的有用工具,NMR 使我们能够在溶液中研究配体结合方向,作为 X 射线晶体学的辅助手段。一个主要的挑战仍然是利用各种方法的力量,促进 CYP2B 特异性和抑制的预测。