Suppr超能文献

肝细胞色素P450:内质网相关降解终局中的结构降解子和条形码、翻译后修饰及细胞衔接蛋白

Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame.

作者信息

Kim Sung-Mi, Wang YongQiang, Nabavi Noushin, Liu Yi, Correia Maria Almira

机构信息

a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA ;

b Department of Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA ;

出版信息

Drug Metab Rev. 2016 Aug;48(3):405-33. doi: 10.1080/03602532.2016.1195403. Epub 2016 Jun 20.

Abstract

The endoplasmic reticulum (ER)-anchored hepatic cytochromes P450 (P450s) are enzymes that metabolize endo- and xenobiotics i.e. drugs, carcinogens, toxins, natural and chemical products. These agents modulate liver P450 content through increased synthesis or reduction via inactivation and/or proteolytic degradation, resulting in clinically significant drug-drug interactions. P450 proteolytic degradation occurs via ER-associated degradation (ERAD) involving either of two distinct routes: Ubiquitin (Ub)-dependent 26S proteasomal degradation (ERAD/UPD) or autophagic lysosomal degradation (ERAD/ALD). CYP3A4, the major human liver/intestinal P450, and the fast-turnover CYP2E1 species are degraded via ERAD/UPD entailing multisite protein phosphorylation and subsequent ubiquitination by gp78 and CHIP E3 Ub-ligases. We are gaining insight into the nature of the structural determinants involved in CYP3A4 and CYP2E1 molecular recognition in ERAD/UPD [i.e. K48-linked polyUb chains and linear and/or "conformational" phosphodegrons consisting either of consecutive sequences on surface loops and/or disordered regions, or structurally-assembled surface clusters of negatively charged acidic (Asp/Glu) and phosphorylated (Ser/Thr) residues, within or vicinal to which, Lys-residues are targeted for ubiquitination]. Structural inspection of select human liver P450s reveals that such linear or conformational phosphodegrons may indeed be a common P450-ERAD/UPD feature. By contrast, although many P450s such as the slow-turnover CYP2E1 species and rat liver CYP2B1 and CYP2C11 are degraded via ERAD/ALD, little is known about the mechanism of their ALD-targeting. On the basis of our current knowledge of ALD-substrate targeting, we propose a tripartite conjunction of K63-linked Ub-chains, P450 structural "LIR" motifs and selective cellular "cargo receptors" as plausible P450-ALD determinants.

摘要

内质网(ER)锚定的肝脏细胞色素P450(P450s)是代谢内源性和外源性物质(即药物、致癌物、毒素、天然产物和化学产物)的酶。这些物质通过增加合成或通过失活和/或蛋白水解降解来减少肝脏P450含量,从而导致具有临床意义的药物相互作用。P450蛋白水解降解通过内质网相关降解(ERAD)发生,涉及两种不同途径中的任何一种:泛素(Ub)依赖性26S蛋白酶体降解(ERAD/UPD)或自噬溶酶体降解(ERAD/ALD)。主要的人肝脏/肠道P450 CYP3A4以及快速周转的CYP2E1亚型通过ERAD/UPD降解,这需要多位点蛋白质磷酸化以及随后由gp78和CHIP E3泛素连接酶进行泛素化。我们正在深入了解参与ERAD/UPD中CYP3A4和CYP2E1分子识别的结构决定因素的性质[即K48连接的多聚泛素链以及由表面环和/或无序区域上的连续序列组成的线性和/或“构象”磷酸化降解基序,或由带负电荷的酸性(Asp/Glu)和磷酸化(Ser/Thr)残基组成的结构组装表面簇,在其内部或附近,赖氨酸残基被靶向进行泛素化]。对选定的人肝脏P450进行结构检查发现,这种线性或构象磷酸化降解基序可能确实是P450-ERAD/UPD的共同特征。相比之下,尽管许多P450,如周转缓慢的CYP2E1亚型以及大鼠肝脏CYP2B1和CYP2C11通过ERAD/ALD降解,但对其ALD靶向机制知之甚少。基于我们目前对ALD底物靶向的了解,我们提出K63连接的泛素链、P450结构“LIR”基序和选择性细胞“货物受体”的三方结合作为合理的P450-ALD决定因素。

相似文献

1
Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame.
Drug Metab Rev. 2016 Aug;48(3):405-33. doi: 10.1080/03602532.2016.1195403. Epub 2016 Jun 20.
4
Hepatic cytochrome P450 ubiquitination: conformational phosphodegrons for E2/E3 recognition?
IUBMB Life. 2014 Feb;66(2):78-88. doi: 10.1002/iub.1247. Epub 2014 Feb 3.
9
Cytochrome P450 endoplasmic reticulum-associated degradation (ERAD): therapeutic and pathophysiological implications.
Acta Pharm Sin B. 2020 Jan;10(1):42-60. doi: 10.1016/j.apsb.2019.11.002. Epub 2019 Nov 8.
10

引用本文的文献

2
Protein degradation: expanding the toolbox to restrain cancer drug resistance.
J Hematol Oncol. 2023 Jan 24;16(1):6. doi: 10.1186/s13045-023-01398-5.
3
MicroRNAs and cancer drug resistance: over two thousand characters in search of a role.
Cancer Drug Resist. 2019 Sep 19;2(3):618-633. doi: 10.20517/cdr.2019.55. eCollection 2019.
5
Protein phosphatase 2A regulates cytotoxicity and drug resistance by dephosphorylating AHR and MDR1.
J Biol Chem. 2022 May;298(5):101918. doi: 10.1016/j.jbc.2022.101918. Epub 2022 Apr 8.
6
Progesterone receptor membrane component 1 (PGRMC1) binds and stabilizes cytochromes P450 through a heme-independent mechanism.
J Biol Chem. 2021 Nov;297(5):101316. doi: 10.1016/j.jbc.2021.101316. Epub 2021 Oct 20.
10
Cytochrome P450 endoplasmic reticulum-associated degradation (ERAD): therapeutic and pathophysiological implications.
Acta Pharm Sin B. 2020 Jan;10(1):42-60. doi: 10.1016/j.apsb.2019.11.002. Epub 2019 Nov 8.

本文引用的文献

2
Structure and function of the AAA+ ATPase p97/Cdc48p.
Gene. 2016 May 25;583(1):64-77. doi: 10.1016/j.gene.2016.02.042. Epub 2016 Mar 3.
3
An overview of macroautophagy in yeast.
J Mol Biol. 2016 May 8;428(9 Pt A):1681-99. doi: 10.1016/j.jmb.2016.02.021. Epub 2016 Feb 22.
4
Mammalian Autophagy: How Does It Work?
Annu Rev Biochem. 2016 Jun 2;85:685-713. doi: 10.1146/annurev-biochem-060815-014556. Epub 2016 Feb 8.
5
Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis.
Cancer Cell. 2015 Nov 9;28(5):653-665. doi: 10.1016/j.ccell.2015.10.002.
6
Regulation of Liver Metabolism by Autophagy.
Gastroenterology. 2016 Feb;150(2):328-39. doi: 10.1053/j.gastro.2015.09.042. Epub 2015 Oct 8.
7
p62/SQSTM1 functions as a signaling hub and an autophagy adaptor.
FEBS J. 2015 Dec;282(24):4672-8. doi: 10.1111/febs.13540. Epub 2015 Oct 16.
8
Substrate degradation by the proteasome: a single-molecule kinetic analysis.
Science. 2015 Apr 10;348(6231):1250834. doi: 10.1126/science.1250834.
9
Gp78, an E3 ubiquitin ligase acts as a gatekeeper suppressing nonalcoholic steatohepatitis (NASH) and liver cancer.
PLoS One. 2015 Mar 19;10(3):e0118448. doi: 10.1371/journal.pone.0118448. eCollection 2015.
10
CHIP: a co-chaperone for degradation by the proteasome.
Subcell Biochem. 2015;78:219-42. doi: 10.1007/978-3-319-11731-7_11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验