Suppr超能文献

人工神经网络在时间序列预测中的应用。

Artificial neural networks applied to forecasting time series.

机构信息

Facultad de Psicología, Universidad de las Islas Baleares, 07122 Palma, Spain.

出版信息

Psicothema. 2011 Apr;23(2):322-9.

Abstract

This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

摘要

本研究对已被证明在时间序列预测中有用的主要人工神经网络 (ANN) 模型进行了描述和比较,还提供了 ANN 在这类任务中的实际应用的标准程序。分析了多层感知器 (MLP)、径向基函数 (RBF)、广义回归神经网络 (GRNN) 和递归神经网络 (RNN) 模型。为此,我们使用了由 244 个时间点组成的时间序列。一项比较研究表明,分析的四个神经网络模型所犯的错误小于 10%。根据这种性能的解释标准,可以得出结论,神经网络模型在其预测能力方面具有紧密的拟合度。表现最好的模型是 RBF,其次是 RNN 和 MLP。GRNN 模型的性能最差。最后,我们分析了 ANN 的优点和局限性、这些局限性的可能解决方案,并为未来的研究提供了方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验