Suppr超能文献

基于人工神经网络技术的 MLP、GRNN 和 RBF 模型对太阳能空气加热器的能量性能预测。

Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique.

机构信息

Department of Mechanical Engineering, National Institute of Technology, Jamshedpur, Jharkhand, 831014, India.

出版信息

J Environ Manage. 2018 Oct 1;223:566-575. doi: 10.1016/j.jenvman.2018.06.033. Epub 2018 Jun 28.

Abstract

In the present study three different types of neural models: multi-layer perceptron (MLP), generalized regression neural network (GRNN) and radial basis function (RBF) has been used to predict the exergetic efficiency of roughened solar air heater. The experiments were conducted at NIT Jamshedpur, India, using two different types of absorber plate: arc shape wire rib roughened with relative roughness height 0.0395, relative roughness pitch 10 and angle of attack 60°, and smooth absorber plates for 7 days. Total 210 data sets were collected from the experiments. Mass flow rate, relative humidity, wind speed, ambient air temperature, inlet air temperature, mean air temperature, average plate temperature and solar intensity were selected as input parameters in input layer to estimate the exergetic efficiency. In the first part of study, MLP model has been used. In this model 10-20 neurons with LM learning algorithm were used in hidden layer for optimal model selection. It has been found that LM-18 is an optimal model. In second part, GRNN model was used. The GRNN model was simulated experimentally at different spread constants and found that keeping spread constant as 1.5, optimal results have been obtained. In the third part, RBF model was used. For optimal model, 1-5 spread constant at interval of 0.5 have been used. It has been found that by taking spread constant 3.5, best results are obtained. In the last part of the study, all neural models are compared on the basis of statistical error analysis. It has been found that RBF model is better than GRNN and MLP models due to lowest value of RMSE and MAE and highest value of R and ME. After RBF model, GRNN model performs better results as compared to MLP model. It has been found that the values of RMSE, MAE and R were 0.001652, 2.86E-04 and 0.99999 respectively for RBF model.

摘要

在本研究中,使用了三种不同类型的神经网络模型:多层感知器(MLP)、广义回归神经网络(GRNN)和径向基函数(RBF),以预测粗糙化太阳能空气加热器的(火用)效率。实验在印度贾姆谢德布尔的 NIT 进行,使用了两种不同类型的吸收板:相对粗糙度高度为 0.0395、相对粗糙度间距为 10 且攻角为 60°的弧形线肋粗糙化吸收板,以及光滑吸收板,实验持续了 7 天。从实验中收集了 210 组数据集。质量流量、相对湿度、风速、环境空气温度、入口空气温度、平均空气温度、平均板温度和太阳强度被选为输入层中的输入参数,以估计(火用)效率。在研究的第一部分,使用了 MLP 模型。在该模型中,使用了具有 LM 学习算法的 10-20 个神经元在隐藏层中进行最优模型选择。发现 LM-18 是一个最优模型。在第二部分,使用了 GRNN 模型。GRNN 模型在不同扩展常数下进行了实验模拟,发现保持扩展常数为 1.5 时,可以获得最佳结果。在第三部分,使用了 RBF 模型。对于最优模型,使用了间隔为 0.5 的 1-5 个扩展常数。发现当取扩展常数为 3.5 时,可以得到最佳结果。在研究的最后一部分,基于统计误差分析对所有神经网络模型进行了比较。发现 RBF 模型由于 RMSE 和 MAE 的最低值以及 R 和 ME 的最高值,优于 GRNN 和 MLP 模型。在 RBF 模型之后,GRNN 模型的表现优于 MLP 模型。发现 RBF 模型的 RMSE、MAE 和 R 的值分别为 0.001652、2.86E-04 和 0.99999。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验