Suppr超能文献

生长素、细胞分裂素与侧芽分枝的调控。

Auxin, cytokinin and the control of shoot branching.

机构信息

Department of Biology, University of York, York, UK.

出版信息

Ann Bot. 2011 May;107(7):1203-12. doi: 10.1093/aob/mcr069. Epub 2011 Apr 18.

Abstract

BACKGROUND

It has been known for many decades that auxin inhibits the activation of axillary buds, and hence shoot branching, while cytokinin has the opposite effect. However, the modes of action of these two hormones in branching control is still a matter of debate, and their mechanisms of interaction are equally unresolved.

SCOPE

Here we review the evidence for various hypotheses that have been put forward to explain how auxin and cytokinin influence axillary bud activity. In particular we discuss the roles of auxin and cytokinin in regulating each other's synthesis, the cell cycle, meristem function and auxin transport, each of which could affect branching. These different mechanisms have implications for the main site of hormone action, ranging from systemic action throughout the plant, to local action at the node or in the bud meristem or leaves. The alternative models have specific predictions, and our increasing understanding of the molecular basis for hormone transport and signalling, cell cycle control and meristem biology is providing new tools to enable these predictions to be tested.

摘要

背景

几十年来,人们已经知道生长素抑制侧芽的激活,从而抑制分枝,而细胞分裂素则有相反的效果。然而,这两种激素在分枝控制中的作用模式仍然存在争议,它们的相互作用机制同样没有解决。

范围

在这里,我们回顾了各种假说的证据,这些假说被提出来解释生长素和细胞分裂素如何影响腋芽的活性。特别是,我们讨论了生长素和细胞分裂素在调节彼此的合成、细胞周期、分生组织功能和生长素运输中的作用,这些都可能影响分枝。这些不同的机制涉及激素作用的主要部位,从整个植物的系统作用到节间或芽分生组织或叶片的局部作用。替代模型有具体的预测,我们对激素运输和信号转导、细胞周期控制和分生组织生物学的分子基础的理解不断加深,为这些预测的检验提供了新的工具。

相似文献

1
Auxin, cytokinin and the control of shoot branching.
Ann Bot. 2011 May;107(7):1203-12. doi: 10.1093/aob/mcr069. Epub 2011 Apr 18.
3
Roles for auxin, cytokinin, and strigolactone in regulating shoot branching.
Plant Physiol. 2009 Apr;149(4):1929-44. doi: 10.1104/pp.109.135475. Epub 2009 Feb 13.
4
Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
PLoS Genet. 2019 Mar 13;15(3):e1008023. doi: 10.1371/journal.pgen.1008023. eCollection 2019 Mar.
5
Auxin-cytokinin interactions in the control of shoot branching.
Plant Mol Biol. 2009 Mar;69(4):429-35. doi: 10.1007/s11103-008-9416-3. Epub 2008 Oct 30.
6
Auxin-cytokinin interaction regulates meristem development.
Mol Plant. 2011 Jul;4(4):616-25. doi: 10.1093/mp/ssr007. Epub 2011 Feb 28.
7
Cytokinin Targets Auxin Transport to Promote Shoot Branching.
Plant Physiol. 2018 Jun;177(2):803-818. doi: 10.1104/pp.17.01691. Epub 2018 May 1.
8
Hormonal control of shoot branching.
J Exp Bot. 2008;59(1):67-74. doi: 10.1093/jxb/erm134. Epub 2007 Aug 28.
9
Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice.
Mech Dev. 2015 Feb;135:1-15. doi: 10.1016/j.mod.2014.11.001. Epub 2014 Nov 18.
10

引用本文的文献

1
Successful Establishment of Somatic Embryogenesis and Shoot Organogenesis Systems in C.A.Mey.
Plants (Basel). 2025 Aug 28;14(17):2688. doi: 10.3390/plants14172688.
2
Non-Canonical Inter-Protein Interactions of Key Proteins Belonging to Cytokinin Signaling Pathways.
Plants (Basel). 2025 May 15;14(10):1485. doi: 10.3390/plants14101485.
3
Comparison of endogenous hormone content and balance in Franch. seedlings after decapitation.
Front Plant Sci. 2025 Apr 16;16:1531575. doi: 10.3389/fpls.2025.1531575. eCollection 2025.
4
A chromosome-scale and haplotype-resolved genome assembly of tetraploid blackberry ( L. subgenus Watson).
Hortic Res. 2025 Feb 18;12(6):uhaf052. doi: 10.1093/hr/uhaf052. eCollection 2025 Jun.
5
A 294 kb deletion causes reduced leaflet size and biomass in pigeonpea.
Plant Cell Rep. 2025 Apr 16;44(5):98. doi: 10.1007/s00299-025-03488-9.
6
Strigolactone insensitivity affects the hormonal homeostasis in barley.
Sci Rep. 2025 Mar 18;15(1):9375. doi: 10.1038/s41598-025-94430-2.
7
Transcriptomic and biochemical insights into key gene networks driving bulbil development of Pinellia ternata (Thunb.) Breit.
PLoS One. 2025 Feb 11;20(2):e0314396. doi: 10.1371/journal.pone.0314396. eCollection 2025.
10
Dwarfism mechanism in Malus clonal rootstocks.
Planta. 2024 Nov 6;260(6):133. doi: 10.1007/s00425-024-04561-5.

本文引用的文献

2
Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth.
Plant J. 2011 Feb;65(4):571-7. doi: 10.1111/j.1365-313X.2010.04443.x. Epub 2011 Jan 11.
4
Strigolactones enhance competition between shoot branches by dampening auxin transport.
Development. 2010 Sep 1;137(17):2905-13. doi: 10.1242/dev.051987. Epub 2010 Jul 28.
5
Hormonal control of the shoot stem-cell niche.
Nature. 2010 Jun 24;465(7301):1089-92. doi: 10.1038/nature09126.
6
FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice.
Plant Cell Physiol. 2010 Jul;51(7):1127-35. doi: 10.1093/pcp/pcq083. Epub 2010 Jun 14.
7
Vegetative axillary bud dormancy induced by shade and defoliation signals in the grasses.
Plant Signal Behav. 2010 Mar;5(3):317-9. doi: 10.4161/psb.5.3.11186. Epub 2010 Mar 7.
8
Metabolism and long-distance translocation of cytokinins.
J Integr Plant Biol. 2010 Jan;52(1):53-60. doi: 10.1111/j.1744-7909.2010.00898.x.
9
TCP genes: a family snapshot ten years later.
Trends Plant Sci. 2010 Jan;15(1):31-9. doi: 10.1016/j.tplants.2009.11.003. Epub 2009 Dec 4.
10
Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways.
Plant Cell Environ. 2010 Jan;33(1):48-58. doi: 10.1111/j.1365-3040.2009.02050.x. Epub 2009 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验