Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
J Biol Chem. 2011 Jun 17;286(24):21796-805. doi: 10.1074/jbc.M111.228445. Epub 2011 Apr 20.
Co-chaperonin GroES from Escherichia coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i.e. the completely disordered state in guanidine hydrochloride, this molecular chaperone forms amyloid fibrils similar to those observed in various neurodegenerative diseases. Thus, this is a good model system to understand the amyloid fibril formation mechanism of intrinsically disordered proteins. Here, we identified a critical intermediate of GroES in the early stages of this fibril formation using NMR and mass spectroscopy measurements. A covalent rearrangement of the polypeptide bond at Asn(45)-Gly(46) and/or Asn(51)-Gly(52) that eventually yield β-aspartic acids via deamidation of asparagine was observed to precede fibril formation. Mutation of these asparagines to alanines resulted in delayed nucleus formation. Our results indicate that peptide bond rearrangement at Asn-Gly enhances the formation of GroES amyloid fibrils. The finding provides a novel insight into the structural process of amyloid fibril formation from a disordered state, which may be applicable to intrinsically disordered proteins in general.
大肠杆菌的共伴侣蛋白 GroES 与伴侣蛋白 GroEL 共同作用,介导各种蛋白质的折叠反应。然而,在特定条件下,即在盐酸胍的完全无序状态下,这种分子伴侣会形成类似各种神经退行性疾病中观察到的淀粉样纤维。因此,这是一个很好的模型系统,可以了解无规卷曲蛋白质的淀粉样纤维形成机制。在这里,我们使用 NMR 和质谱测量鉴定了该纤维形成早期 GroES 的一个关键中间产物。在纤维形成之前,观察到多肽键在 Asn(45)-Gly(46) 和/或 Asn(51)-Gly(52) 处发生共价重排,最终通过天冬酰胺脱酰胺作用生成 β-天冬氨酸。将这些天冬酰胺突变为丙氨酸会导致核形成延迟。我们的结果表明,天冬酰胺-甘氨酸肽键的重排增强了 GroES 淀粉样纤维的形成。这一发现为从无序状态形成淀粉样纤维的结构过程提供了新的见解,这可能适用于一般的无规卷曲蛋白质。