Suppr超能文献

晶状体老化:晶状体蛋白的影响。

Lens aging: effects of crystallins.

作者信息

Sharma K Krishna, Santhoshkumar Puttur

机构信息

Department of Ophthalmology, University of Missouri-Columbia, 1 Hospital Drive, Columbia, MO 65212, USA.

出版信息

Biochim Biophys Acta. 2009 Oct;1790(10):1095-108. doi: 10.1016/j.bbagen.2009.05.008. Epub 2009 May 20.

Abstract

The primary function of the eye lens is to focus light on the retina. The major proteins in the lens--alpha, beta, and gamma-crystallins--are constantly subjected to age-related changes such as oxidation, deamidation, truncation, glycation, and methylation. Such age-related modifications are cumulative and affect crystallin structure and function. With time, the modified crystallins aggregate, causing the lens to increasingly scatter light on the retina instead of focusing light on it and causing the lens to lose its transparency gradually and become opaque. Age-related lens opacity, or cataract, is the major cause of blindness worldwide. We review deamidation, and glycation that occur in the lenses during aging keeping in mind the structural and functional changes that these modifications bring about in the proteins. In addition, we review proteolysis and discuss recent observations on how crystallin fragments generated in vivo, through their anti-chaperone activity may cause crystallin aggregation in aging lenses. We also review hyperbaric oxygen treatment induced guinea pig and 'humanized' ascorbate transporting mouse models as suitable options for studies on age-related changes in lens proteins.

摘要

眼球晶状体的主要功能是将光线聚焦在视网膜上。晶状体中的主要蛋白质——α、β和γ晶状体蛋白——不断受到与年龄相关的变化影响,如氧化、脱酰胺、截短、糖基化和甲基化。这种与年龄相关的修饰是累积性的,会影响晶状体蛋白的结构和功能。随着时间的推移,修饰后的晶状体蛋白会聚集,导致晶状体越来越多地将光线散射在视网膜上,而不是将光线聚焦在视网膜上,从而使晶状体逐渐失去透明度并变得混浊。与年龄相关的晶状体混浊,即白内障,是全球失明的主要原因。我们回顾了衰老过程中晶状体发生的脱酰胺和糖基化,并牢记这些修饰在蛋白质中引起的结构和功能变化。此外,我们回顾了蛋白水解,并讨论了关于体内产生的晶状体蛋白片段如何通过其抗伴侣活性导致衰老晶状体中晶状体蛋白聚集的最新观察结果。我们还回顾了高压氧治疗诱导的豚鼠和“人源化”抗坏血酸转运小鼠模型,将其作为研究晶状体蛋白与年龄相关变化的合适选择。

相似文献

1
Lens aging: effects of crystallins.
Biochim Biophys Acta. 2009 Oct;1790(10):1095-108. doi: 10.1016/j.bbagen.2009.05.008. Epub 2009 May 20.
2
Lens β-crystallins: the role of deamidation and related modifications in aging and cataract.
Prog Biophys Mol Biol. 2014 Jul;115(1):21-31. doi: 10.1016/j.pbiomolbio.2014.02.004. Epub 2014 Mar 6.
5
Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation.
J Biol Chem. 2008 Mar 28;283(13):8477-85. doi: 10.1074/jbc.M705876200. Epub 2008 Jan 28.
6
Identification of Age- and Cataract-Related Changes in High-Density Lens Protein Aggregates.
Invest Ophthalmol Vis Sci. 2025 May 1;66(5):34. doi: 10.1167/iovs.66.5.34.
8
Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins.
Biochim Biophys Acta. 2008 Jan;1782(1):22-34. doi: 10.1016/j.bbadis.2007.10.003. Epub 2007 Oct 16.
10
Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.
Biochem Biophys Res Commun. 2015 Oct 30;466(4):622-8. doi: 10.1016/j.bbrc.2015.09.075. Epub 2015 Sep 16.

引用本文的文献

1
From Pathophysiology to Innovative Therapies in Eye Diseases: A Brief Overview.
Int J Mol Sci. 2025 Sep 1;26(17):8496. doi: 10.3390/ijms26178496.
2
Lipid and Cholesterol Peroxidation Leads to α-Crystallin Membrane Aggregation and Cataract Formation.
Invest Ophthalmol Vis Sci. 2025 Sep 2;66(12):8. doi: 10.1167/iovs.66.12.8.
3
Ocular changes as potential biomarkers for early diagnosis of Alzheimer's disease.
Alzheimers Dement. 2025 Aug;21(8):e70476. doi: 10.1002/alz.70476.
8
Zebrafish as a model for crystallin-associated congenital cataracts in humans.
Front Cell Dev Biol. 2025 Mar 26;13:1552988. doi: 10.3389/fcell.2025.1552988. eCollection 2025.
9
Proximal cysteine residues in proteins promote N-carboxyalkylation of lysine residues by α-dicarbonyl compounds.
J Biol Chem. 2025 Apr;301(4):108377. doi: 10.1016/j.jbc.2025.108377. Epub 2025 Mar 4.

本文引用的文献

1
Role of cysteine residues in the enhancement of chaperone function in methylglyoxal-modified human alpha A-crystallin.
Mol Cell Biochem. 2009 Feb;322(1-2):185-91. doi: 10.1007/s11010-008-9956-5. Epub 2008 Nov 20.
3
On the mechanism of organelle degradation in the vertebrate lens.
Exp Eye Res. 2009 Feb;88(2):133-9. doi: 10.1016/j.exer.2008.08.017. Epub 2008 Sep 18.
4
Protein-protein interactions and lens transparency.
Exp Eye Res. 2008 Dec;87(6):496-501. doi: 10.1016/j.exer.2008.08.018. Epub 2008 Sep 18.
5
Oxidative stress, lens gap junctions, and cataracts.
Antioxid Redox Signal. 2009 Feb;11(2):339-53. doi: 10.1089/ars.2008.2119.
6
The lens capsule.
Exp Eye Res. 2009 Feb;88(2):151-64. doi: 10.1016/j.exer.2008.08.002. Epub 2008 Aug 16.
7
Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses.
Biochim Biophys Acta. 2008 Dec;1784(12):1959-64. doi: 10.1016/j.bbapap.2008.07.016. Epub 2008 Aug 8.
8
Structural and functional roles of deamidation and/or truncation of N- or C-termini in human alpha A-crystallin.
Biochemistry. 2008 Sep 23;47(38):10069-83. doi: 10.1021/bi8001902. Epub 2008 Aug 29.
9
Mechanism of insolubilization by a single-point mutation in alphaA-crystallin linked with hereditary human cataracts.
Biochemistry. 2008 Sep 9;47(36):9697-706. doi: 10.1021/bi800594t. Epub 2008 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验