Research Service, Maryland VA Healthcare System, Baltimore, Maryland, USA.
J Neurosci Res. 2011 Dec;89(12):1979-88. doi: 10.1002/jnr.22650. Epub 2011 Apr 21.
Multiple neurodegenerative disorders are associated with altered mitochondrial bioenergetics. Although mitochondrial O(2) consumption is frequently measured in isolated mitochondria, isolated synaptic nerve terminals (synaptosomes), or cultured cells, the absence of mature brain circuitry is a remaining limitation. Here we describe the development of a method that adapts the Seahorse Extracellular Flux Analyzer (XF24) for the microplate-based measurement of hippocampal slice O(2) consumption. As a first evaluation of the technique, we compared whole-slice bioenergetics with previous measurements made with synaptosomes or cultured neurons. We found that mitochondrial respiratory capacity and O(2) consumption coupled to ATP synthesis could be estimated in cultured or acute hippocampal slices with preserved neural architecture. Mouse organotypic hippocampal slices oxidizing glucose displayed mitochondrial O(2) consumption that was well coupled, as determined by the sensitivity to the ATP synthase inhibitor oligomycin. However, stimulation of respiration by uncoupler was modest (<120% of basal respiration) compared with previous measurements in cells or synaptosomes, though enhanced slightly (to ∼150% of basal respiration) by acute addition of the mitochondrial complex I-linked substrate pyruvate. These findings suggest a high basal utilization of respiratory capacity in slices and a limitation of glucose-derived substrate for maximal respiration. The improved throughput of microplate-based hippocampal respirometry over traditional O(2) electrode-based methods is conducive to neuroprotective drug screening. When coupled with cell type-specific pharmacology or genetic manipulations, the ability to measure O(2) consumption efficiently from whole slices should advance our understanding of mitochondrial roles in physiology and neuropathology.
多种神经退行性疾病与改变的线粒体生物能学有关。虽然线粒体 O(2)消耗经常在分离的线粒体、分离的突触神经末梢(突触体)或培养的细胞中进行测量,但缺乏成熟的大脑电路仍然是一个限制因素。在这里,我们描述了一种方法的发展,该方法适应 Seahorse 细胞外通量分析仪 (XF24) 用于基于微孔板的海马切片 O(2)消耗的测量。作为该技术的首次评估,我们将全切片生物能学与先前使用突触体或培养神经元进行的测量进行了比较。我们发现,在具有保留的神经结构的培养或急性海马切片中,可以估计线粒体呼吸能力和与 ATP 合成偶联的 O(2)消耗。氧化葡萄糖的小鼠器官型海马切片显示出良好偶联的线粒体 O(2)消耗,这可以通过对 ATP 合酶抑制剂寡霉素的敏感性来确定。然而,与细胞或突触体中的先前测量相比,解偶联剂刺激呼吸的程度较低(<基础呼吸的 120%),但通过急性添加线粒体复合物 I 相关底物丙酮酸,呼吸增强(至基础呼吸的约 150%)。这些发现表明切片中呼吸能力的基础利用度较高,以及葡萄糖衍生底物对最大呼吸的限制。基于微孔板的海马呼吸测量法比传统的 O(2)电极法具有更高的通量,有利于神经保护药物筛选。当与细胞类型特异性药理学或遗传操作相结合时,从整个切片中高效测量 O(2)消耗的能力应该有助于我们理解线粒体在生理学和神经病理学中的作用。