Suppr超能文献

放电变异性高于从经验变异系数推断出的水平。

Firing variability is higher than deduced from the empirical coefficient of variation.

机构信息

Department of Mathematical Sciences, University of Copenhagen, Denmark.

出版信息

Neural Comput. 2011 Aug;23(8):1944-66. doi: 10.1162/NECO_a_00157. Epub 2011 Apr 26.

Abstract

A convenient and often used summary measure to quantify the firing variability in neurons is the coefficient of variation (CV), defined as the standard deviation divided by the mean. It is therefore important to find an estimator that gives reliable results from experimental data, that is, the estimator should be unbiased and have low estimation variance. When the CV is evaluated in the standard way (empirical standard deviation of interspike intervals divided by their average), then the estimator is biased, underestimating the true CV, especially if the distribution of the interspike intervals is positively skewed. Moreover, the estimator has a large variance for commonly used distributions. The aim of this letter is to quantify the bias and propose alternative estimation methods. If the distribution is assumed known or can be determined from data, parametric estimators are proposed, which not only remove the bias but also decrease the estimation errors. If no distribution is assumed and the data are very positively skewed, we propose to correct the standard estimator. When defining the corrected estimator, we simply use that it is more stable to work on the log scale for positively skewed distributions. The estimators are evaluated through simulations and applied to experimental data from olfactory receptor neurons in rats.

摘要

一种方便且常用的量化神经元放电变异性的综合指标是变异系数(CV),定义为标准差除以平均值。因此,找到一个能够从实验数据中给出可靠结果的估计器非常重要,也就是说,该估计器应该无偏且具有低估计方差。当以标准方式评估 CV 时(峰间间隔的经验标准偏差除以其平均值),则该估计器存在偏差,低估了真实的 CV,尤其是如果峰间间隔的分布呈正偏态。此外,对于常用的分布,该估计器的方差较大。这封信的目的是量化偏差并提出替代的估计方法。如果假设分布已知或可以从数据中确定,则提出参数估计器,该估计器不仅消除了偏差,而且还降低了估计误差。如果没有假设分布并且数据非常正偏态,则建议对标准估计器进行修正。在定义修正估计器时,我们只需使用对于正偏态分布,在对数尺度上工作更稳定这一事实。通过模拟评估了这些估计器,并将其应用于来自大鼠嗅觉受体神经元的实验数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验