Department of Molecular Cell Biology, Electron Microscopy Section, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
J Synchrotron Radiat. 2011 May;18(Pt 3):398-412. doi: 10.1107/S090904951100820X. Epub 2011 Apr 9.
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments.
辐射损伤是大分子 X 射线晶体学和冷冻电子显微镜的一个重要分辨率限制因素。在大分子 X 射线晶体学中,系统研究大大受益于剂量的使用,剂量表示为单位质量所沉积的能量,其来源于包括入射通量、光束能量、光束大小、样品组成和样品大小在内的参数。在这里,我们重新引入了电子显微镜中的剂量,以说明电子能量、入射通量以及所测量的样品厚度和组成。对沉积能量的了解使我们能够将剂量与大分子 X 射线晶体学中的实验极限进行比较,对玻璃状样品中自由基浓度的积累进行上限估计,并将大分子 X 射线晶体学中的传热模拟转换为冷冻电子显微镜。从 Lumbricus terrestris 细胞外血红蛋白中,我们以不同的入射通量密度和积分时间收集了 50-250 张图像的频闪曝光系列。每个系列中的图像都通过相似性度量(如傅里叶环相关、傅里叶环相位残差和优值)进行计算对齐和分析。在气泡形成之前,图像的亮度随剂量呈线性增加,每增加 10 MGy 约增加 0.1%。在高达 5500 MGy 的一系列剂量下,可以观察到玻璃状血红蛋白样品的逐渐分解,此时样品已经升华。对不同入射通量密度下收集的等剂量系列的比较表明,剂量率效应有利于较低的通量密度。热模拟预测,只有当剂量率非常高(50 e(-)Å(-2) s(-1)或更高)且网格和冷冻支架之间的热接触不良时,样品加热才会成为一个问题。次生辐射分解效应可能在剂量率效应中起作用。频闪数据收集以及对剂量和剂量率影响的理解的提高,将有助于单颗粒冷冻电子显微镜学家更好地控制其实验结果。