Hernandez G, McCarthy M P
Department of Earth and Space Sciences, Box 351310, University of Washington, Seattle, Washington 98195‐1310, USA.
Appl Opt. 2011 May 1;50(13):1951-7. doi: 10.1364/AO.50.001951.
To insure that long-term determinations of Doppler width and shift--derived from observations of atmospheric emissions--are internally consistent and reliable, we have developed a method to both continuously and nonintrusively determine and monitor the instrumental constants of the Fabry-Perot spectrometer making the observations. We have used this method at our isolated field experiment at South Pole, Antarctica, because the instrument is only accessible to us for a few days every year. Here we report both the method and the Fabry-Perot stability results for the past 22 years of operation. The method involves the description of real Fabry-Perot instrumental constants as a small departure from those of an ideal Fabry-Perot. In general, this model is applicable for most observations. However, experimentally, there are times when the small-departure model is not applicable, thus indicating how to best reduce the observations into physical quantities for the utmost consistency in the geophysical results.