Suppr超能文献

使用超快焦磷酸测序技术对高 GC 微生物基因组进行测序。

Sequencing of high G+C microbial genomes using the ultrafast pyrosequencing technology.

机构信息

Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.

出版信息

J Biotechnol. 2011 Aug 20;155(1):68-77. doi: 10.1016/j.jbiotec.2011.04.010. Epub 2011 Apr 23.

Abstract

Next generation pyrosequencing of high G+C content genomes still poses problems to automated sequencing and assembly processes which necessitates cost and time intensive manual work in order to finish such genomes completely. The sequencing of the high G+C actinomycete Actinoplanes sp. SE50/110 was performed with standard pyrosequencing technology (454 Life Sciences) and revealed a high number of gaps. The reasons for the introduction of gaps were analyzed on a previously known 41kb long DNA reference sequence from Actinoplanes sp. SE50/110, hosting the acarbose biosynthesis gene cluster. Mapping of the sequencing results on the reference gene cluster sequence revealed a fragmentation into 30 contiguous sequences of different lengths. The gaps between these sequences were characterized by extremely low read coverage which strongly correlated with the G+C content in the gap regions in a negative manner. Furthermore, the gap-sequences contained strong stem-loop structures which hindered the amplification of these sequences during the emulsion PCR. Being significantly underrepresented or absent in the subsequent sequencing process, these sequences lead to weakly or uncovered genomic regions which forces the assembly algorithm to output multiple contiguous sequences instead of one finished genome. However, by applying a different pyrosequencing protocol, it was possible to sequence the complete acarbose biosynthesis gene cluster. The changes to the protocol include longer read length and addition of chemicals to the amplification chemistry, which reduces the self-annealing of DNA fragments during the amplification process and enables the complete reconstruction of high G+C content genomes without manual intervention.

摘要

下一代高 GC 含量基因组的焦磷酸测序仍然给自动化测序和组装过程带来问题,这需要耗费大量的时间和成本,需要进行人工干预才能完成此类基因组的测序。放线菌 Actinoplanes sp. SE50/110 的测序是使用标准焦磷酸测序技术(454 Life Sciences)完成的,结果显示存在大量缺口。在 Actinoplanes sp. SE50/110 的先前已知的 41kb 长 DNA 参考序列上分析了引入缺口的原因,该序列包含阿卡波糖生物合成基因簇。将测序结果映射到参考基因簇序列上,发现这些序列被碎片化成长度不同的 30 个连续序列。这些序列之间的缺口具有极低的读取覆盖率,这与缺口区域的 GC 含量呈负相关。此外,缺口序列中存在强烈的茎环结构,这在乳液 PCR 过程中阻碍了这些序列的扩增。这些序列在随后的测序过程中显著缺失或不存在,导致基因组区域较弱或无法覆盖,这迫使组装算法输出多个连续序列,而不是一个完整的基因组。然而,通过应用不同的焦磷酸测序方案,可以对完整的阿卡波糖生物合成基因簇进行测序。该方案的改变包括读取长度的增加和扩增化学物质的添加,这减少了 DNA 片段在扩增过程中的自我退火,从而能够在无需人工干预的情况下完整重建高 GC 含量的基因组。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验