Suppr超能文献

蛋白结合:我们是否曾有所学?

Protein binding: do we ever learn?

机构信息

Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.

出版信息

Antimicrob Agents Chemother. 2011 Jul;55(7):3067-74. doi: 10.1128/AAC.01433-10. Epub 2011 May 2.

Abstract

Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested.

摘要

虽然多年来已有许多抗生素的相关研究报告指出蛋白结合(protein binding,PB)会影响抗生素的抗菌活性,但目前仍未有标准化的药效模型可用来评估抗菌药物在体外的蛋白结合对其产生的影响。这或许可以解释不同研究中得到的结果有些相互矛盾。简单的体外模型,将无蛋白标准培养基中获得的 MIC 值与富含蛋白的培养基中获得的 MIC 值进行比较,容易产生方法学上的缺陷,并可能导致错误的结论。在体外试验系统中,一系列试验条件,包括蛋白来源、测试抗生素的浓度、温度、pH 值、电解质和补充剂等,可能会影响蛋白结合的影响。随着具有高度蛋白结合的新型抗生素正在临床开发中,关注并采取行动来优化和标准化体外试验中蛋白结合对抗生素活性的影响变得更加紧迫。此外,由于生理条件不同,需要建立体外和体内蛋白结合作用之间的定量关系。建议提出了一些关于体外试验中蛋白结合影响的测试的一般建议。

相似文献

1
Protein binding: do we ever learn?
Antimicrob Agents Chemother. 2011 Jul;55(7):3067-74. doi: 10.1128/AAC.01433-10. Epub 2011 May 2.
4
Impact of erythrocytes on bacterial growth and antimicrobial activity of selected antibiotics.
Eur J Clin Microbiol Infect Dis. 2019 Mar;38(3):485-495. doi: 10.1007/s10096-018-03452-4. Epub 2019 Jan 28.
7
Effect of protein binding of daptomycin on MIC and antibacterial activity.
Antimicrob Agents Chemother. 1991 Dec;35(12):2505-8. doi: 10.1128/AAC.35.12.2505.
8
Effect of Susceptibility Testing Conditions on the In Vitro Antibacterial Activity of ETX0914.
Diagn Microbiol Infect Dis. 2017 Feb;87(2):139-142. doi: 10.1016/j.diagmicrobio.2016.03.007. Epub 2016 Mar 8.
9
Computational analysis of structure-based interactions and ligand properties can predict efflux effects on antibiotics.
Eur J Med Chem. 2012 Jun;52:98-110. doi: 10.1016/j.ejmech.2012.03.008. Epub 2012 Mar 12.

引用本文的文献

1
A novel vasculogenic mimicry-related nomogram predicts prognosis in hepatocellular carcinoma.
Front Genet. 2025 Jul 7;16:1431624. doi: 10.3389/fgene.2025.1431624. eCollection 2025.
2
Reviewing the complexities of bacterial biocide susceptibility and in vitro biocide adaptation methodologies.
NPJ Antimicrob Resist. 2025 May 13;3(1):39. doi: 10.1038/s44259-025-00108-0.
3
Host Biomarkers and Antibiotic Tissue Penetration in Sepsis: Insights from Moxifloxacin.
Eur J Drug Metab Pharmacokinet. 2025 Apr 23. doi: 10.1007/s13318-025-00945-4.
5
In Vitro and In Vivo Pharmacokinetic Characterization of 7-Hydroxymitragynine, an Active Metabolite of Mitragynine, in Sprague-Dawley Rats.
Eur J Drug Metab Pharmacokinet. 2025 May;50(3):205-218. doi: 10.1007/s13318-025-00939-2. Epub 2025 Mar 22.
7
Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring.
Adv Sci (Weinh). 2025 Jan;12(2):e2411433. doi: 10.1002/advs.202411433. Epub 2024 Nov 26.
8
Insights into interspecies protein binding variability using clindamycin as an example.
J Antimicrob Chemother. 2025 Feb 3;80(2):363-371. doi: 10.1093/jac/dkae412.
10
Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers.
Mol Cancer. 2024 Oct 31;23(1):244. doi: 10.1186/s12943-024-02163-z.

本文引用的文献

1
The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery.
Nat Rev Drug Discov. 2010 Dec;9(12):929-39. doi: 10.1038/nrd3287.
2
3
Flucloxacillin dosing in critically ill patients with hypoalbuminaemia: special emphasis on unbound pharmacokinetics.
J Antimicrob Chemother. 2010 Aug;65(8):1771-8. doi: 10.1093/jac/dkq184. Epub 2010 Jun 8.
5
Significance of protein binding in pharmacokinetics and pharmacodynamics.
J Pharm Sci. 2010 Mar;99(3):1107-22. doi: 10.1002/jps.21916.
6
Alterations of furosemide binding to serum albumin induced by increased level of fatty acid.
J Pharm Biomed Anal. 2010 Jan 5;51(1):273-7. doi: 10.1016/j.jpba.2009.07.025. Epub 2009 Jul 30.
7
Cefazolin plasma protein binding saturability during pregnancy.
Methods Find Exp Clin Pharmacol. 2009 Jan-Feb;31(1):25-8. doi: 10.1358/mf.2009.31.1.1338413.
9
Pharmacodynamics of tigecycline against phenotypically diverse Staphylococcus aureus isolates in a murine thigh model.
Antimicrob Agents Chemother. 2009 Mar;53(3):1165-9. doi: 10.1128/AAC.00647-08. Epub 2008 Dec 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验