Suppr超能文献

评价一些在精神科临床试验中针对高安慰剂反应的富集设计的性能。

Evaluation of performance of some enrichment designs dealing with high placebo response in psychiatric clinical trials.

机构信息

Division of Biometric I, Office of Biostatistics, Office of Translational Sciences, Center of Drug Evaluation and Research (CDER), Food and Drug Administration, Silver Spring, MD 20993-0002,USA.

出版信息

Contemp Clin Trials. 2011 Jul;32(4):592-604. doi: 10.1016/j.cct.2011.04.006. Epub 2011 Apr 20.

Abstract

Dealing with high placebo response remains a big challenge to conventional clinical trials for psychiatric disorders. A widely-used design strategy is to implement a placebo lead-in phase prior to randomization. The sequentially parallel design (SPD) proposed by Fava et al., which contains two consecutive double-blind treatment stages, has recently been promoted to reduce both the high placebo response and the required sample size in clinical trials for psychiatric disorders. Our work aims to study these two design strategies and evaluate the relevant statistical approaches for continuous measures under SPD in the presence of missing data. Based on the FDA archived database, we found that a longer placebo lead-in period seemed to help in identifying more placebo responders and thus increase the chance to detect a drug-placebo difference on continuous efficacy endpoint. Using a simple weighted ordinary least square test statistic Z(OLS), we analytically showed that, under the SPD with re-randomization of placebo non-responders at the second stage (SPD-ReR), Z(OLS) can be used as a viable alternative to the weighted test statistic based on seemingly unrelated regression estimate Z(SUR) proposed by Tamura and Huang to assess treatment efficacy. Results from simulation study comparing three imputation methods (last-observation-carried-forward approach, multiple imputation, and mixed-effects model for repeated measures (MMRM)) demonstrate that, when data are missing-at-random under SPD-ReR and the dropout rate is moderate, the weighted test statistic based on MMRM estimates appears to be the most robust test statistic for SPD-ReR in terms of type I error control, power performance, and estimation accuracy.

摘要

处理高安慰剂反应仍然是精神障碍常规临床试验的一大挑战。一种广泛使用的设计策略是在随机分组前实施安慰剂导入期。Fava 等人提出的序贯平行设计(SPD),包含两个连续的双盲治疗阶段,最近被推广用于降低精神障碍临床试验中的高安慰剂反应和所需样本量。我们的工作旨在研究这两种设计策略,并评估 SPD 下连续测量缺失数据的相关统计方法。基于 FDA 存档数据库,我们发现较长的安慰剂导入期似乎有助于识别更多的安慰剂反应者,从而增加在连续疗效终点检测药物与安慰剂差异的机会。使用简单的加权普通最小二乘检验统计量 Z(OLS),我们分析表明,在第二阶段重新随机分配安慰剂无反应者的 SPD(SPD-ReR)下,Z(OLS)可作为 Tamura 和 Huang 提出的基于似不相关回归估计的加权检验统计量 Z(SUR)的可行替代方法,用于评估治疗效果。比较三种插补方法(末次观察结转法、多重插补和重复测量混合效应模型(MMRM))的模拟研究结果表明,当 SPD-ReR 下数据缺失随机且辍学率适中时,基于 MMRM 估计的加权检验统计量在 SPD-ReR 的 I 型错误控制、功效性能和估计准确性方面似乎是最稳健的检验统计量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验