BIOPHYM, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, CSIC, Serrano 113bis, 28006 Madrid, Spain.
J Mol Model. 2012 Feb;18(2):515-23. doi: 10.1007/s00894-011-1093-5. Epub 2011 May 4.
In this work, the copolymerization of ethylene and methyl acrylate (MA) as catalyzed by a new Ni-based PymNox organometallic compound was studied computationally. We recently tested the behavior of this type of catalyst in ethylene homopolymerization. Experimental results show that the unsubstituted catalyst Ni2 (aldimino PymNox catalyst) is unable to incorporate the MA monomer, whereas methyl-substituted Ni1 (acetaldimino PymNox catalyst) is able to achieve copolymerization. The reactivities of both catalysts were examined using density functional theory (DFT) models. Based on energy profiles calculated at the BP86 level, a Curtin-Hammett mechanism was proposed to explain the different reactivities of the catalysts in ethylene/MA copolymerization. Our results indicate that the methyl substituent Ni1 introduces additional steric hindrance that results in a catalyst conformation that is better suited to polar monomer incorporation. This model provides insights into the design of new catalysts to produce polar functionalized copolymers based on ethylene.
在这项工作中,通过计算研究了新型镍基 PymNox 有机金属化合物催化的乙烯和甲基丙烯酸甲酯(MA)的共聚反应。我们最近测试了这种类型催化剂在乙烯均聚反应中的行为。实验结果表明,未取代的催化剂 Ni2(aldimino PymNox 催化剂)不能掺入 MA 单体,而甲基取代的 Ni1(acetaldimino PymNox 催化剂)能够实现共聚。使用密度泛函理论(DFT)模型研究了两种催化剂的反应性。基于在 BP86 水平计算的能量分布,提出了 Curtin-Hammett 机理来解释催化剂在乙烯/MA 共聚反应中的不同反应性。我们的结果表明,甲基取代基 Ni1 引入了额外的空间位阻,导致催化剂构象更适合极性单体的掺入。该模型为设计新型催化剂以生产基于乙烯的极性功能化共聚物提供了思路。