Suppr超能文献

电解质和非电解质在水溶液中的溶解。

Solvation of electrolytes and nonelectrolytes in aqueous solutions.

机构信息

Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia.

出版信息

J Phys Chem B. 2011 May 26;115(20):6541-63. doi: 10.1021/jp1108834. Epub 2011 May 4.

Abstract

A new theory of electrolyte and nonelectrolyte solutions has been developed which, unlike the Debye-Hückel method applicable for small concentrations only, makes it possible to estimate thermodynamic properties of a solution in a wide range of state parameters. One of the main novelties of the proposed theory is that it takes into account the dependence of solvation numbers upon the concentration of solution, and all changes occurring in the solution are connected with solvation of the stoichiometric mixture of electrolyte ions or molecules. The present paper proposes a rigorous thermodynamic analysis of hydration parameters of solutions. Ultrasound and densimetric measurements in combination with data on isobaric heat capacity have been used to study aqueous solutions of electrolytes NaNO3, KI, NaCl, KCl, MgCl2, and MgSO4 and of nonelectrolytes urea, urotropine, and acetonitrile. Structural characteristics of hydration complexes have been analyzed: hydration numbers h, the proper volume of the stoichiometric mixture of ions without hydration shells V(2h), compressibility β(1h), and the molar volume of water in hydration shells V(1h), their dependencies on concentration and temperature. It has been shown that for aqueous solutions the electric field of ions and molecules of nonelectrolytes has a greater influence on the temperature dependence of the molar volume of solution in hydration shells than a simple change of pressure. The cause of this effect may be due to the change in the dielectric permeability of water in the immediate vicinity of hydrated ions or molecules. The most studied compounds (NaCl, KCl, KI, MgCl2) have been studied in a wider range of solute concentrations of up to 4-5 mol/kg. Up to the complete solvation limit (CSL), the functions V(1h) = f(T) and β(1h) = f(T) are linear with a high correlation factor, and the dependence Y(K,S) = f(β1V1*) at all investigated concentrations of electrolytes and nonelectrolytes up to the CSL enables h and β(h)V(h) to be determined on the basis of relationships obtained in the study. The behavior of nonelectrolyte solutions is no different from that of electrolyte solutions, although it is possible to trace the difference between hydrophobic and hydrophilic interactions.

摘要

一种新的电解质和非电解质溶液理论已经被发展出来,与仅适用于小浓度的 Debye-Hückel 方法不同,该理论使得在广泛的状态参数范围内估算溶液的热力学性质成为可能。该理论的主要新颖之处之一是它考虑了溶剂化数随溶液浓度的依赖性,并且溶液中发生的所有变化都与电解质离子或分子的化学计量混合物的溶剂化有关。本文提出了一种严格的溶液水合参数热力学分析方法。超声和密度测量与等压热容数据相结合,用于研究电解质 NaNO3、KI、NaCl、KCl、MgCl2 和 MgSO4 的水溶液以及非电解质尿素、乌洛托品和乙腈的水溶液。分析了水合络合物的结构特征:溶剂化数 h、无水化壳的离子化学计量混合物的固有体积 V(2h)、压缩系数 β(1h) 和水化壳中水的摩尔体积 V(1h) 及其对浓度和温度的依赖性。结果表明,对于水溶液,离子和非电解质分子的电场对水合壳中溶液摩尔体积的温度依赖性的影响大于简单压力变化的影响。这种效应的原因可能是由于在水化离子或分子的紧邻区域中水的介电常数的变化。最受研究的化合物(NaCl、KCl、KI、MgCl2)在溶质浓度高达 4-5 mol/kg 的更宽范围内进行了研究。在完全溶剂化极限(CSL)之前,V(1h) = f(T)和 β(1h) = f(T) 函数是线性的,相关系数很高,并且在电解质和非电解质的所有研究浓度下,Y(K,S) = f(β1V1*) 依赖关系直到 CSL 都允许根据研究中获得的关系确定 h 和 β(h)V(h)。非电解质溶液的行为与电解质溶液没有区别,尽管可以追踪疏水性和亲水性相互作用之间的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验