Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1751, USA.
J Neurosci. 2011 May 4;31(18):6831-41. doi: 10.1523/JNEUROSCI.6572-10.2011.
Whether changes in neuronal excitability can cause neurodegenerative disease in the absence of other factors such as protein aggregation is unknown. Mutations in the Kv3.3 voltage-gated K(+) channel cause spinocerebellar ataxia type 13 (SCA13), a human autosomal-dominant disease characterized by locomotor impairment and the death of cerebellar neurons. Kv3.3 channels facilitate repetitive, high-frequency firing of action potentials, suggesting that pathogenesis in SCA13 is triggered by changes in electrical activity in neurons. To investigate whether SCA13 mutations alter excitability in vivo, we expressed the human dominant-negative R420H mutant subunit in zebrafish. The disease-causing mutation specifically suppressed the excitability of Kv3.3-expressing, fast-spiking motor neurons during evoked firing and fictive swimming and, in parallel, decreased the precision and amplitude of the startle response. The dominant-negative effect of the mutant subunit on K(+) current amplitude was directly responsible for the reduced excitability and locomotor phenotype. Our data provide strong evidence that changes in excitability initiate pathogenesis in SCA13 and establish zebrafish as an excellent model system for investigating how changes in neuronal activity impair locomotor control and cause cell death.
在没有蛋白质聚集等其他因素的情况下,神经元兴奋性的变化是否会导致神经退行性疾病尚不清楚。电压门控 K(+) 通道 Kv3.3 的突变会导致脊髓小脑共济失调 13 型(SCA13),这是一种常染色体显性遗传疾病,其特征是运动功能障碍和小脑神经元死亡。Kv3.3 通道促进动作电位的重复、高频发射,这表明 SCA13 的发病机制是由神经元电活动的变化引发的。为了研究 SCA13 突变是否会改变体内的兴奋性,我们在斑马鱼中表达了人类显性负性 R420H 突变亚基。这种致病突变特异性地抑制了诱发放电和虚构游泳时表达 Kv3.3 的快速放电运动神经元的兴奋性,同时降低了惊跳反应的精度和幅度。突变亚基对 K(+)电流幅度的显性负性作用直接导致兴奋性和运动表型降低。我们的数据提供了强有力的证据,表明兴奋性的变化引发了 SCA13 的发病机制,并确立了斑马鱼作为研究神经元活动变化如何损害运动控制并导致细胞死亡的优秀模型系统。