Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA.
J Physiol. 2012 Apr 1;590(7):1599-614. doi: 10.1113/jphysiol.2012.228205. Epub 2012 Jan 30.
Mutations in Kv3.3 cause spinocerebellar ataxia type 13 (SCA13). Depending on the causative mutation, SCA13 is either a neurodevelopmental disorder that is evident in infancy or a progressive neurodegenerative disease that emerges during adulthood. Previous studies did not clarify the relationship between these distinct clinical phenotypes and the effects of SCA13 mutations on Kv3.3 function. The F448L mutation alters channel gating and causes early-onset SCA13. R420H and R423H suppress Kv3 current amplitude by a dominant negative mechanism. However, R420H results in the adult form of the disease whereas R423H produces the early-onset, neurodevelopmental form with significant clinical overlap with F448L. Since individuals with SCA13 have one wild type and one mutant allele of the Kv3.3 gene, we analysed the properties of tetrameric channels formed by mixtures of wild type and mutant subunits. We report that one R420H subunit and at least one R423H subunit can co-assemble with the wild type protein to form active channels. The functional properties of channels containing R420H and wild type subunits strongly resemble those of wild type alone. In contrast, channels containing R423H and wild type subunits show significantly altered gating, including a hyperpolarized shift in the voltage dependence of activation, slower activation, and modestly slower deactivation. Notably, these effects resemble the modified gating seen in channels containing a mixture of F448L and wild type subunits, although the F448L subunit slows deactivation more dramatically than the R423H subunit. Our results suggest that the clinical severity of R423H reflects its dual dominant negative and dominant gain of function effects. However, as shown by R420H, reducing current amplitude without altering gating does not result in infant onset disease. Therefore, our data strongly suggest that changes in Kv3.3 gating contribute significantly to an early age of onset in SCA13.
Kv3.3 基因突变可导致脊髓小脑共济失调 13 型(SCA13)。根据致病突变的不同,SCA13 既有可能是在婴儿期就表现明显的神经发育障碍,也有可能是成年后才出现的进行性神经退行性疾病。以往的研究并未阐明这些截然不同的临床表型与 SCA13 突变对 Kv3.3 功能的影响之间的关系。F448L 突变改变了通道门控,导致 SCA13 早发型发病。R420H 和 R423H 通过显性负性机制抑制 Kv3 电流幅度。然而,R420H 导致疾病的成人发病形式,而 R423H 则导致早发型、神经发育障碍形式,与 F448L 有显著的临床重叠。由于 SCA13 患者的 Kv3.3 基因有一个野生型和一个突变型等位基因,我们分析了野生型和突变型亚基混合形成的四聚体通道的特性。我们报告说,一个 R420H 亚基和至少一个 R423H 亚基可以与野生型蛋白共同组装形成有活性的通道。含有 R420H 和野生型亚基的通道的功能特性与单独含有野生型的通道非常相似。相比之下,含有 R423H 和野生型亚基的通道的门控明显改变,包括激活的电压依赖性超极化漂移、激活速度较慢以及去激活速度稍慢。值得注意的是,这些效应类似于含有 F448L 和野生型亚基混合物的通道中观察到的修饰门控,尽管 F448L 亚基的去激活速度比 R423H 亚基慢得多。我们的结果表明,R423H 的临床严重程度反映了其双重显性负性和显性获得性功能效应。然而,正如 R420H 所表明的,不改变门控而降低电流幅度不会导致婴儿发病。因此,我们的数据强烈表明,Kv3.3 门控的变化显著导致 SCA13 的发病年龄较早。