Burke Medical Research Institute, White Plains, New York 10605, USA.
J Neurosci. 2011 May 4;31(18):6858-70. doi: 10.1523/JNEUROSCI.0710-11.2011.
Oncogenic transformation of postmitotic neurons triggers cell death, but the identity of genes critical for degeneration remain unclear. The antitumor antibiotic mithramycin prolongs survival of mouse models of Huntington's disease in vivo and inhibits oxidative stress-induced death in cortical neurons in vitro. We had correlated protection by mithramycin with its ability to bind to GC-rich DNA and globally displace Sp1 family transcription factors. To understand how antitumor drugs prevent neurodegeneration, here we use structure-activity relationships of mithramycin analogs to discover that selective DNA-binding inhibition of the drug is necessary for its neuroprotective effect. We identify several genes (Myc, c-Src, Hif1α, and p21(waf1/cip1)) involved in neoplastic transformation, whose altered expression correlates with protective doses of mithramycin or its analogs. Most interestingly, inhibition of one these genes, Myc, is neuroprotective, whereas forced expression of Myc induces Rattus norvegicus neuronal cell death. These results support a model in which cancer cell transformation shares key genetic components with neurodegeneration.
致癌转化后有丝分裂后的神经元会触发细胞死亡,但对于导致退化的关键基因仍不清楚。抗肿瘤抗生素米托蒽醌可延长亨廷顿病小鼠模型的存活期,并抑制体外皮质神经元的氧化应激诱导死亡。我们发现米托蒽醌与 GC 丰富的 DNA 结合并全局置换 Sp1 家族转录因子的能力与其保护作用相关。为了了解抗肿瘤药物如何预防神经退行性变,我们使用米托蒽醌类似物的结构-活性关系来发现药物的选择性 DNA 结合抑制对于其神经保护作用是必需的。我们确定了几个参与肿瘤转化的基因(Myc、c-Src、Hif1α和 p21(waf1/cip1)),它们的表达改变与米托蒽醌或其类似物的保护剂量相关。最有趣的是,抑制这些基因之一 Myc 具有神经保护作用,而 Myc 的强制表达会诱导大鼠神经元细胞死亡。这些结果支持了这样一种模型,即癌细胞转化与神经退行性变共享关键遗传成分。