Department of Physiology, Johns Hopkins School of Medicine, 725 N. Wolfe Streets, Baltimore, MD 21205, USA.
J Membr Biol. 2011 May;241(2):59-68. doi: 10.1007/s00232-011-9362-x. Epub 2011 May 5.
The spatial relationships between molecules can be quantified in terms of information. In the case of membranes, the spatial organization of molecules in a bilayer is closely related to biophysically and biologically important properties. Here, we present an approach to computing spatial information based on Fourier coefficient distributions. The Fourier transform (FT) of an image contains a complete description of the image, and the values of the FT coefficients are uniquely associated with that image. For an image where the distribution of pixels is uncorrelated, the FT coefficients are normally distributed and uncorrelated. Further, the probability distribution for the FT coefficients of such an image can readily be obtained by Parseval's theorem. We take advantage of these properties to compute the spatial information in an image by determining the probability of each coefficient (both real and imaginary parts) in the FT, then using the Shannon formalism to calculate information. By using the probability distribution obtained from Parseval's theorem, an effective distance from the uncorrelated or most uncertain case is obtained. The resulting quantity is an information computed in k-space (kSI). This approach provides a robust, facile and highly flexible framework for quantifying spatial information in images and other types of data (of arbitrary dimensions). The kSI metric is tested on a 2D Ising model, frequently used as a model for lipid bilayer; and the temperature-dependent phase transition is accurately determined from the spatial information in configurations of the system.
分子之间的空间关系可以用信息来量化。在膜的情况下,双层中分子的空间组织与生物物理和生物学上重要的性质密切相关。在这里,我们提出了一种基于傅里叶系数分布计算空间信息的方法。图像的傅里叶变换(FT)包含了图像的完整描述,并且 FT 系数的值与该图像唯一相关。对于像素分布不相关的图像,FT 系数是正态分布且不相关的。此外,通过 Parseval 定理可以很容易地获得此类图像的 FT 系数的概率分布。我们利用这些特性,通过确定 FT 中每个系数(实部和虚部)的概率来计算图像中的空间信息,然后使用香农形式来计算信息。通过使用 Parseval 定理获得的概率分布,可以从无关联或最不确定的情况获得有效距离。由此产生的量是在 k 空间(kSI)中计算的信息量。这种方法为量化图像和其他类型的数据(任意维度)中的空间信息提供了一个稳健、简单和高度灵活的框架。kSI 度量在二维伊辛模型上进行了测试,该模型经常被用作脂质双层的模型;并且可以从系统构型中的空间信息准确地确定与温度相关的相变。