Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital, Boston, United States.
J Chem Neuroanat. 2011 Jul;41(4):247-55. doi: 10.1016/j.jchemneu.2011.04.004. Epub 2011 Apr 27.
The dorsal raphe nucleus (DR) contains the majority of serotonin (5-hydroxytryptamine, 5-HT) neurons in the brain that regulate neural activity in forebrain regions through their widespread projections. DR function is linked to stress and emotional processing, and is implicated in the pathophysiology of affective disorders. Glutamatergic drive of the DR arises from many different brain areas with the capacity to inform the nucleus of sensory, autonomic, endocrine and metabolic state as well as higher order neural function. Imbalance of glutamatergic neurotransmission could contribute to maladaptive 5-HT neurotransmission and represents a potential target for pharmacotherapy. Within the DR, glutamate-containing axon terminals can be identified by their content of one of three types of vesicular glutamate transporter, VGLUT1, 2 or 3. Each of these transporters is heavily expressed in particular brain areas such that their content within axons correlates with the afferent's source. Cortical sources of innervation to the DR including the medial prefrontal cortex heavily express VGLUT1 whereas subcortical sources primarily express VGLUT2. Within the DR, many local neurons responsive to substance P contain VGLUT3, and these provide a third source of excitatory drive to 5-HT cells. Moreover VGLUT3 is present, with or without 5-HT, in output pathways from the DR. 5-HT and non-5-HT neurons receive and integrate glutamatergic neurotransmission through multiple subtypes of glutamate receptors that have different patterns of expression within the DR. Interestingly, excitatory drive provided by glutamatergic neurotransmission is closely opposed by feedback inhibition mediated by 5-HT1A receptors or local GABAergic circuits. Understanding the intricacies of these local networks and their checks and balances, may help identify how potential imbalances could cause psychopathology and illuminate strategies for therapeutic manipulation.
中缝背核(DR)包含了大脑中大部分的 5-羟色胺(5-HT)神经元,它们通过广泛的投射调节前脑区域的神经活动。DR 的功能与应激和情绪处理有关,并且与情感障碍的病理生理学有关。DR 的谷氨酸能驱动来自许多不同的脑区,这些脑区有能力向核提供感觉、自主、内分泌和代谢状态以及更高阶的神经功能的信息。谷氨酸能神经传递的不平衡可能导致 5-HT 神经传递的适应不良,代表了药物治疗的潜在目标。在 DR 内,可以通过其三种囊泡谷氨酸转运体之一的含量来识别含有谷氨酸的轴突末梢,即 VGLUT1、2 或 3。这些转运体中的每一种在特定的脑区都有大量表达,因此它们在轴突中的含量与传入源相关。DR 的皮质传入源包括内侧前额叶皮质,强烈表达 VGLUT1,而皮质下传入源主要表达 VGLUT2。在 DR 内,许多对 P 物质有反应的局部神经元含有 VGLUT3,它们为 5-HT 细胞提供了第三种兴奋性驱动源。此外,VGLUT3 存在于 DR 的输出通路中,无论是否存在 5-HT。5-HT 和非 5-HT 神经元通过具有不同 DR 内表达模式的多种谷氨酸受体接收和整合谷氨酸能神经传递。有趣的是,由谷氨酸能神经传递提供的兴奋性驱动受到 5-HT1A 受体或局部 GABA 能回路介导的反馈抑制的紧密拮抗。了解这些局部网络的复杂性及其制衡关系,可能有助于确定潜在的失衡如何导致精神病理学,并阐明治疗干预的策略。