Wighton Paul, Lee Tim K, Lui Harvey, McLean David I, Atkins M Stella
Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
IEEE Trans Inf Technol Biomed. 2011 Jul;15(4):622-9. doi: 10.1109/TITB.2011.2150758. Epub 2011 May 5.
We present a general model using supervised learning and MAP estimation that is capable of performing many common tasks in automated skin lesion diagnosis. We apply our model to segment skin lesions, detect occluding hair, and identify the dermoscopic structure pigment network. Quantitative results are presented for segmentation and hair detection and are competitive when compared to other specialized methods. Additionally, we leverage the probabilistic nature of the model to produce receiver operating characteristic curves, show compelling visualizations of pigment networks, and provide confidence intervals on segmentations.
我们提出了一种使用监督学习和最大后验估计的通用模型,该模型能够在自动皮肤病变诊断中执行许多常见任务。我们将我们的模型应用于分割皮肤病变、检测遮挡毛发以及识别皮肤镜结构色素网络。给出了分割和毛发检测的定量结果,与其他专门方法相比具有竞争力。此外,我们利用模型的概率性质来生成接收器操作特征曲线,展示色素网络的令人信服的可视化结果,并提供分割的置信区间。