Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Neurosurgery. 2011 Oct;69(4):942-56. doi: 10.1227/NEU.0b013e318222afb2.
Dipyrone is an analgesic and antipyretic drug usually prescribed for patients with inflammatory conditions. We recently identified dipyrone as an antiapoptotic agent by screening a library of 1040 compounds for their ability to inhibit cytochrome c release from isolated mitochondria.
We investigated the potential neuroprotective properties of dipyrone in cerebral ischemia.
We evaluated the protective effects of dipyrone in experimental models of neuronal hypoxia/ischemia, including an oxygen/glucose deprivation model in primary cerebrocortical neurons and a focal cerebral ischemia model in mice.
Dipyrone reduced hypoxia/ischemia injury in both cellular and animal models. Dipyrone inhibited the release of cytochrome c and other mitochondrial apoptogenic factors from mitochondria into the cytoplasm, and attenuated subsequent caspase-9 and caspase-3 activation both in vitro and in vivo. Moreover, dipyrone prevented ischemia-induced changes in Bcl-2 and tBid, and ameliorated oxygen/glucose deprivation-mediated loss of mitochondrial membrane potential. Dipyrone also inhibited ischemia-induced reactive microgliosis. In the cellular models evaluated, dipyrone did not inhibit oxygen/glucose deprivation-induced cyclooxygenase-2 activation.
Dipyrone is remarkably neuroprotective in cerebral ischemia, and its cyclooxygenase-independent protective properties are, at least in part, due to the inhibition of mitochondrial cell death cascades.
匹罗昔康是一种常用于治疗炎症性疾病的镇痛和退热药物。我们最近通过筛选 1040 种化合物库,发现匹罗昔康具有抑制细胞色素 c 从分离的线粒体中释放的能力,从而将其鉴定为一种抗细胞凋亡药物。
我们研究了匹罗昔康在脑缺血中的潜在神经保护特性。
我们评估了匹罗昔康在神经元缺氧/缺血实验模型中的保护作用,包括原代皮质神经元的氧/葡萄糖剥夺模型和小鼠局灶性脑缺血模型。
匹罗昔康减少了细胞和动物模型中的缺氧/缺血损伤。匹罗昔康抑制了细胞色素 c 和其他线粒体促凋亡因子从线粒体向细胞质的释放,并在体外和体内均减弱了随后的半胱天冬酶-9 和半胱天冬酶-3 的激活。此外,匹罗昔康防止了缺血引起的 Bcl-2 和 tBid 的变化,并改善了氧/葡萄糖剥夺介导的线粒体膜电位丧失。匹罗昔康还抑制了缺血引起的小胶质细胞反应性增生。在所评估的细胞模型中,匹罗昔康不抑制氧/葡萄糖剥夺诱导的环氧化酶-2 激活。
匹罗昔康在脑缺血中具有显著的神经保护作用,其环氧化酶非依赖性的保护特性至少部分归因于抑制线粒体细胞死亡级联。