Suppr超能文献

用于学习大型不完整矩阵的谱正则化算法

Spectral Regularization Algorithms for Learning Large Incomplete Matrices.

作者信息

Mazumder Rahul, Hastie Trevor, Tibshirani Robert

机构信息

Department of Statistics, Stanford University.

出版信息

J Mach Learn Res. 2010 Mar 1;11:2287-2322.

Abstract

We use convex relaxation techniques to provide a sequence of regularized low-rank solutions for large-scale matrix completion problems. Using the nuclear norm as a regularizer, we provide a simple and very efficient convex algorithm for minimizing the reconstruction error subject to a bound on the nuclear norm. Our algorithm Soft-Impute iteratively replaces the missing elements with those obtained from a soft-thresholded SVD. With warm starts this allows us to efficiently compute an entire regularization path of solutions on a grid of values of the regularization parameter. The computationally intensive part of our algorithm is in computing a low-rank SVD of a dense matrix. Exploiting the problem structure, we show that the task can be performed with a complexity linear in the matrix dimensions. Our semidefinite-programming algorithm is readily scalable to large matrices: for example it can obtain a rank-80 approximation of a 10(6) × 10(6) incomplete matrix with 10(5) observed entries in 2.5 hours, and can fit a rank 40 approximation to the full Netflix training set in 6.6 hours. Our methods show very good performance both in training and test error when compared to other competitive state-of-the art techniques.

摘要

我们使用凸松弛技术为大规模矩阵补全问题提供一系列正则化的低秩解。以核范数作为正则化项,我们提供了一种简单且高效的凸算法,用于在核范数有界的情况下最小化重构误差。我们的算法Soft-Impute迭代地用从软阈值奇异值分解(SVD)得到的元素替换缺失元素。通过热启动,这使我们能够在正则化参数值的网格上高效地计算整个解的正则化路径。我们算法中计算密集的部分是计算一个稠密矩阵的低秩奇异值分解。利用问题结构,我们表明该任务可以以与矩阵维度成线性关系的复杂度来执行。我们的半定规划算法很容易扩展到大型矩阵:例如,它可以在2.5小时内得到一个10(6)×10(6)的不完整矩阵(有10(5)个观测值)的秩为80的近似,并且可以在6.6小时内为完整的Netflix训练集拟合一个秩为40的近似。与其他具有竞争力的先进技术相比,我们的方法在训练误差和测试误差方面都表现出非常好的性能。

相似文献

3
Generalized Unitarily Invariant Gauge Regularization for Fast Low-Rank Matrix Recovery.用于快速低秩矩阵恢复的广义酉不变规范正则化
IEEE Trans Neural Netw Learn Syst. 2021 Apr;32(4):1627-1641. doi: 10.1109/TNNLS.2020.2985850. Epub 2021 Apr 2.
4
Rank-One Matrix Completion With Automatic Rank Estimation via L1-Norm Regularization.通过L1范数正则化进行具有自动秩估计的一阶矩阵补全
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4744-4757. doi: 10.1109/TNNLS.2017.2766160. Epub 2017 Dec 11.
9
Matrix Completion Based on Non-convex Low Rank Approximation.基于非凸低秩逼近的矩阵补全
IEEE Trans Image Process. 2018 Dec 14. doi: 10.1109/TIP.2018.2886712.

引用本文的文献

本文引用的文献

1
Missing value estimation methods for DNA microarrays.DNA微阵列的缺失值估计方法。
Bioinformatics. 2001 Jun;17(6):520-5. doi: 10.1093/bioinformatics/17.6.520.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验