Aldiss Zachary, Lam Yasmine, Baraibar Silvina, Van Der Meer Sarah, Dinglasan Eric, Massel Karen, Crisp Peter, Godwin Ian, Borrell Andrew, Moody David, Hickey Lee, Robinson Hannah
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
InterGrain Pty Ltd., Perth, Western Australia, Australia.
Plant Genome. 2025 Sep;18(3):e70088. doi: 10.1002/tpg2.70088.
Root system architecture (RSA) plays a crucial role in crop adaptation and yield stability, especially in the context of climate change and variable growing conditions. Despite this, the genetic basis of RSA remains poorly understood in barley (Hordeum vulgare L.), necessitating the need for more research to better characterize this architecture and explore the potential of diverse germplasm for trait improvement. In this study, we aimed to dissect the genetic basis of seminal root angle (SRA) by examining natural variation within a diverse global collection of 816 barley accessions, including both landraces and modern cultivars. Using a haplotype-based mapping approach, which reflects the recombination patterns considered in breeding programs, we identified chromosomal regions associated with SRA variation. Notably, two major genomic regions on chromosome 5H were identified as novel, while a previously reported region, RAQ1, was confirmed on chromosome 3H. Our analysis revealed significant genetic diversity for SRA within the global collection, with accessions from distinct geographic origins exhibiting unique haplotype combinations. This finding underscores the quantitative nature of the SRA trait and suggests the likelihood of inadvertent selection through polygenic traits related to canopy or yield in commercial breeding programs. To further explore the genetic potential of SRA, we employed a simulation approach to evaluate the feasibility of creating an "ultimate genotype" for narrow SRA. Our results highlight the challenges associated with significantly altering SRA through traditional breeding approaches due to its quantitative, polygenic nature. Consequently, we recommend the integration of predictive and precision breeding techniques, such as genomic selection and gene editing, to effectively capture genetic diversity and accelerate RSA improvement in barley.
根系结构(RSA)在作物适应和产量稳定性方面起着至关重要的作用,特别是在气候变化和生长条件多变的背景下。尽管如此,大麦(Hordeum vulgare L.)根系结构的遗传基础仍知之甚少,因此需要更多研究来更好地表征这种结构,并探索不同种质在性状改良方面的潜力。在本研究中,我们旨在通过研究816份全球大麦种质(包括地方品种和现代品种)的自然变异来剖析种子根角度(SRA)的遗传基础。我们使用基于单倍型的定位方法,该方法反映了育种计划中考虑的重组模式,确定了与SRA变异相关的染色体区域。值得注意的是,在5H染色体上鉴定出两个主要的基因组区域为新区域,而之前报道的位于3H染色体上的RAQ1区域得到了确认。我们的分析揭示了全球种质中SRA存在显著的遗传多样性,来自不同地理起源的种质表现出独特的单倍型组合。这一发现强调了SRA性状的数量性质,并表明在商业育种计划中可能因与冠层或产量相关的多基因性状而产生无意选择。为了进一步探索SRA的遗传潜力,我们采用模拟方法评估创建窄SRA“终极基因型”的可行性。我们的结果凸显了由于SRA的数量、多基因性质,通过传统育种方法显著改变SRA所面临的挑战。因此,我们建议整合预测性和精准育种技术,如基因组选择和基因编辑,以有效获取遗传多样性并加速大麦根系结构的改良。