Suppr超能文献

利用单一机构的临床数据仓库资源开发胰腺内分泌肿瘤的多变量预后模型。

Developing a multivariable prognostic model for pancreatic endocrine tumors using the clinical data warehouse resources of a single institution.

作者信息

Botsis Taxiarchis, Anagnostou Valsamo K, Hartvigsen Gunnar, Hripcsak George, Weng Chunhua

机构信息

Department of Biomedical Informatics, Columbia University, New York, NY, USA.

出版信息

Appl Clin Inform. 2010;1(1):38-49. doi: 10.4338/ACI-2009-12-RA-0026.

Abstract

OBJECTIVE

Current staging systems are not accurate for classifying pancreatic endocrine tumors (PETs) by risk. Here, we developed a prognostic model for PETs and compared it to the WHO classification system. METHODS: We identified 98 patients diagnosed with PET at NewYork-Presbyterian Hospital/Columbia University Medical Center (1999 to 2009). Tumor and clinical characteristics were retrieved and associations with survival were assessed by univariate Cox analysis. A multivariable model was constructed and a risk score was calculated; the prognostic strength of our model was assessed with the concordance index. RESULTS: Our cohort had median age of 60 years and consisted of 61.2% women; median follow-up time was 10.4 months (range: 0.1-99.6) with a 5-year survival of 61.5%. The majority of PETs were non-functional and no difference was observed between functional and non-functional tumors with respect to WHO stage, age, pathologic characteristics or survival. Distant metastases, aspartate aminotransferase-AST and surgical resection (HR=3.39, 95% CI: 1.38-8.35, p=0.008, HR=3.73, 95% CI: 1.20-11.57, p=0.023 and HR=0.20, 95% CI: 0.08-0.51, p<0.001 respectively) were the strongest predictors in the univariate analysis. Age, perineural and/or lymphovascular invasion, distant metastases and AST were the independent prognostic factors in the final multivariable model; a risk score was calculated and classified patients into low (n=40), intermediate (n=48) and high risk (n=10) groups. The concordance index of our model was 0.93 compared to 0.72 for the WHO system. CONCLUSION: Our prognostic model was highly accurate in stratifying patients by risk; novel approaches as such could thus be incorporated into clinical decisions.

摘要

目的

当前的分期系统在根据风险对胰腺内分泌肿瘤(PETs)进行分类方面并不准确。在此,我们开发了一种PETs的预后模型,并将其与世界卫生组织(WHO)分类系统进行比较。方法:我们确定了98例在纽约长老会医院/哥伦比亚大学医学中心被诊断为PET的患者(1999年至2009年)。收集肿瘤和临床特征,并通过单变量Cox分析评估与生存的相关性。构建多变量模型并计算风险评分;使用一致性指数评估我们模型的预后强度。结果:我们的队列中位年龄为60岁,女性占61.2%;中位随访时间为10.4个月(范围:0.1 - 99.6),5年生存率为61.5%。大多数PETs无功能,在WHO分期、年龄、病理特征或生存方面,功能性和无功能性肿瘤之间未观察到差异。远处转移、天冬氨酸转氨酶(AST)和手术切除(HR = 3.39,95% CI:1.38 - 8.35,p = 0.008;HR = 3.73,95% CI:1.20 - 11.57,p = 0.023;HR = 0.20,95% CI:0.08 - 0.51,p < 0.001)分别是单变量分析中最强的预测因素。年龄、神经周和/或淋巴管侵犯、远处转移和AST是最终多变量模型中的独立预后因素;计算风险评分并将患者分为低风险(n = 40)、中风险(n = 48)和高风险(n = 10)组。我们模型的一致性指数为0.93,而WHO系统为0.72。结论:我们的预后模型在按风险对患者进行分层方面高度准确;这样的新方法因此可以纳入临床决策。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验