School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
Phys Chem Chem Phys. 2011 Jun 14;13(22):10641-7. doi: 10.1039/c1cp20368a. Epub 2011 May 6.
A combined NMR and neutron diffraction study has been carried out on three Li(3-x-y)Cu(x)N materials with x=0.17, x=0.29 and x=0.36. Neutron diffraction indicates that the samples retain the P6/mmm space group of the parent Li(3)N with Cu located only on Li(1) sites. The lattice parameters vary smoothly with x in a similar fashion to Li(3-x-y)Ni(x)N, but the Li(2) vacancy concentration for the Cu-substituted materials is negligible. This structural model is confirmed by wideline (7)Li NMR spectra at 193 K which show three different local environments for the Li(1) site, resulting from the substitution of neighbouring Li atoms in the Li(1) layer by Cu. Since the Cu-substituted materials are only very weakly paramagnetic, variable temperature (7)Li wideline NMR spectra can be used to measure diffusion coefficients and activation energies. These indicate anisotropic Li(+) diffusion similar to the parent Li(3)N with transport confined to the [Li(2)N] plane at low temperature and exchange between Li(1) and Li(2) sites dominant at high temperature. For the intra-layer process the diffusion coefficients at room temperature are comparable to Li(3)N and Li(3-x-y) Ni(x)N, while E(a) decreases as x increases in contrast to the opposite trend in Ni-substituted materials. For the inter-layer process E(a) decreases only slightly as x increases, but the diffusion coefficients at room temperature increase rapidly with x.
采用 NMR 和中子衍射技术对三种 Li(3-x-y)Cu(x)N 材料(x=0.17、x=0.29 和 x=0.36)进行了研究。中子衍射表明,样品保留了母相 Li(3)N 的 P6/mmm 空间群,Cu 仅占据 Li(1)位。晶格参数随 x 以与 Li(3-x-y)Ni(x)N 相似的方式平滑变化,但 Cu 取代材料中的 Li(2)空位浓度可以忽略不计。这种结构模型得到了在 193 K 下的宽线(7)Li NMR 谱的证实,其显示 Li(1)位有三种不同的局部环境,这是由于相邻 Li 原子被 Cu 取代所致。由于 Cu 取代材料仅表现出非常弱的顺磁性,因此可以使用变温(7)Li 宽线 NMR 谱来测量扩散系数和激活能。这表明 Li(+)扩散具有各向异性,类似于母相 Li(3)N,低温下传输局限于[Li(2)N]平面,高温下 Li(1)和 Li(2)位之间的交换占主导地位。对于层内过程,在室温下的扩散系数与 Li(3)N 和 Li(3-x-y)Ni(x)N 相当,而 E(a)随 x 的增加而减小,与 Ni 取代材料的相反趋势形成对比。对于层间过程,E(a)随 x 的增加仅略有减小,但室温下的扩散系数随 x 的增加迅速增加。