Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
Environ Microbiol. 2011 Aug;13(8):2299-314. doi: 10.1111/j.1462-2920.2011.02489.x. Epub 2011 May 9.
Amplified Arctic warming could thaw 25% of the permafrost area by 2100, exposing vast amounts of currently fixed organic carbon to microbially mediated decomposition and release of greenhouse gasses through soil organic matter (SOM) respiration. We performed time-series incubation experiments with Holocene permafrost soils at 4°C for up to 11 days to determine changes in exoenzyme activities (EEAs) (i.e. phosphatase, β-glucosidase, aminopeptidase) as a measure for the bioavailability of SOM in response to permafrost thaw. We also profiled SSU rRNA transcripts to follow the qualitative and quantitative changes in viable prokaryotes and eukaryotes during incubation. EEA, amount of rRNA transcripts and microbial community structures differed substantially between the various soil intervals in response to thaw: after 11 days of incubation, the active layer became slightly depleted in C and P and harboured bacterial phyla indicative of more oligotrophic conditions (Acidobacteria). A fast response in phosphatase and β-glucosidase upon thaw, and a predominance of active copiotrophic Bacteroidetes, showed that the upper permafrost plate serves as storage of easily degradable carbon derived from the overlying thawed active layer during summer. EEA profiles and microbial community dynamics furthermore suggest that the deeper and older permafrost intervals mainly contain recalcitrant SOM, and that extracellular soil-bound exoenzymes play a role in the initial cleavage of biopolymers, which could kick-start microbial growth upon thaw. Basidiomycetous fungi and Candidate Subdivision OP5 bacteria were the first to respond in freshly thawed deeper permafrost intervals, and might play an important role in the decomposition of recalcitrant SOM to release more labile substrates to support the major bacterial phyla (β-Proteobacteria, Actinobacteria, Firmicutes), which predominated thereafter.
北极变暖的放大效应可能会导致 2100 年 25%的永久冻土融化,大量目前固定的有机碳通过土壤有机质(SOM)呼吸,被微生物介导分解并释放温室气体。我们在 4°C 下对全新世永久冻土土壤进行了长达 11 天的时间序列培养实验,以确定外切酶活性(EEA)(即磷酸酶、β-葡萄糖苷酶、氨肽酶)的变化,作为响应永久冻土融化的 SOM 生物可利用性的衡量标准。我们还对 SSU rRNA 转录物进行了分析,以跟踪培养过程中可行原核生物和真核生物的定性和定量变化。EEA、rRNA 转录物的数量和微生物群落结构在不同土壤间隔之间因融化而有很大差异:培养 11 天后,活动层的 C 和 P 略有消耗,并且存在指示更贫营养条件的细菌门(酸杆菌门)。融化后磷酸酶和β-葡萄糖苷酶迅速响应,以及活跃的富营养菌拟杆菌门的优势,表明上覆永久冻土板在夏季充当了来自上层融化活动层的易降解碳的储存库。EEA 图谱和微生物群落动态进一步表明,较深和较老的永久冻土间隔主要含有难降解的 SOM,并且细胞外土壤结合的外切酶在生物聚合物的初始裂解中发挥作用,这可能在融化时引发微生物生长。担子菌门真菌和候选亚群 OP5 细菌是最先在新解冻的深层永久冻土间隔中响应的,它们可能在难降解 SOM 的分解中发挥重要作用,以释放更多的可利用底物来支持主要的细菌门(β-变形菌门、放线菌门、厚壁菌门),此后这些细菌门占据主导地位。