中国东北大兴安岭地区活性层土壤有机碳矿化及细菌群落对短期增温的响应

Organic Carbon Mineralization and Bacterial Community of Active Layer Soils Response to Short-Term Warming in the Great Hing'an Mountains of Northeast China.

作者信息

Dong Xingfeng, Liu Chao, Ma Dalong, Wu Yufei, Man Haoran, Wu Xiangwen, Li Miao, Zang Shuying

机构信息

Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.

Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China.

出版信息

Front Microbiol. 2021 Dec 24;12:802213. doi: 10.3389/fmicb.2021.802213. eCollection 2021.

Abstract

As a buffer layer for the energy and water exchange between atmosphere and permafrost, the active layer is sensitive to climate warming. Changes in the thermal state in active layer can alter soil organic carbon (SOC) dynamics. It is critical to identify the response of soil microbial communities to warming to better predict the regional carbon cycle under the background of global warming. Here, the active layer soils collected from a wetland-forest ecotone in the continuous permafrost region of Northeastern China were incubated at 5 and 15°C for 45 days. High-throughput sequencing of the 16S rRNA gene was used to examine the response of bacterial community structure to experimental warming. A total of 4148 OTUs were identified, which followed the order 15°C > 5°C > pre-incubated. Incubation temperature, soil layer and their interaction have significant effects on bacterial alpha diversity (Chao index). Bacterial communities under different temperature were clearly distinguished. Chloroflexi, Actinobacteria, Proteobacteria, and Acidobacteria accounted for more than 80% of the community abundance at the phylum level. Warming decreased the relative abundance of Chloroflexi and Acidobacteria, while Actinobacteria and Proteobacteria exhibited increasing trend. At family level, the abundance of norank_o__norank_c__AD3 and Ktedonobacteraceae decreased significantly with the increase of temperature, while Micrococcaccac increased. In addition, the amount of SOC mineralization were positively correlated with the relative abundances of most bacterial phyla and SOC content. SOC content was positively correlated with the relative abundance of most bacterial phyla. Results indicate that the SOC content was the primary explanatory variable and driver of microbial regulation for SOC mineralization. Our results provide a new perspective for understanding the microbial mechanisms that accelerates SOC decomposition under warming conditions in the forest-wetland ecotone of permafrost region.

摘要

作为大气与多年冻土之间能量和水分交换的缓冲层,活动层对气候变暖敏感。活动层热状态的变化会改变土壤有机碳(SOC)动态。识别土壤微生物群落对变暖的响应对于更好地预测全球变暖背景下的区域碳循环至关重要。在此,从中国东北连续多年冻土区湿地 - 森林交错带采集的活动层土壤在5℃和15℃下培养45天。利用16S rRNA基因的高通量测序来检测细菌群落结构对实验性变暖的响应。共鉴定出4148个操作分类单元(OTU),其顺序为15℃>5℃>预培养。培养温度、土壤层及其相互作用对细菌α多样性(Chao指数)有显著影响。不同温度下的细菌群落有明显区分。在门水平上,绿弯菌门、放线菌门、变形菌门和酸杆菌门占群落丰度的80%以上。变暖降低了绿弯菌门和酸杆菌门的相对丰度,而放线菌门和变形菌门呈增加趋势。在科水平上,norank_o__norank_c__AD3和科氏杆菌科的丰度随温度升高显著降低,而微球菌科增加。此外,SOC矿化量与大多数细菌门的相对丰度和SOC含量呈正相关。SOC含量与大多数细菌门的相对丰度呈正相关。结果表明,SOC含量是微生物对SOC矿化调节的主要解释变量和驱动因素。我们的结果为理解多年冻土区森林 - 湿地交错带变暖条件下加速SOC分解的微生物机制提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/985f/8739994/65107e34f35f/fmicb-12-802213-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索