Suppr超能文献

基于固定在溶胶-凝胶玻璃中的荧光菌绿素的生物传感器的铁特异性。

Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass.

机构信息

Department of Biological and Agricultural Engineering, Driftmier Engineering Center, University of Georgia Athens GA 30602, USA.

出版信息

J Biol Eng. 2011 May 10;5:4. doi: 10.1186/1754-1611-5-4.

Abstract

Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C.

摘要

目前有两种生物技术在生物传感器的发展中非常有前景

  1. 在室温下制造微孔玻璃的溶胶-凝胶过程,以及 2. 使用荧光化合物,该化合物在响应特定分析物时会发生荧光猝灭。这两种技术已经结合起来用于生产铁生物传感器。为了优化铁(II 或 III)的特异性,将绿脓菌素(一种由假单胞菌属产生的荧光铁载体)固定在 3 种多孔溶胶-凝胶玻璃制剂中。这些制剂 A、B 和 C 的区别在于添加的水量不同,导致相应的 R 值(水与硅的摩尔比)分别为 5.6、8.2 和 10.8。将绿脓菌素掺杂的溶胶-凝胶小球置于荧光计的流动池中,并在暴露于 0.28-0.56mM 铁(II 或 III)时测量小球的荧光猝灭。暴露于铁 10 分钟后,亚铁离子引起较小的荧光猝灭(在测试的铁范围内,初始荧光的 89-97%),而铁离子引起更大的猝灭(65-88%)。在溶胶-凝胶 C 中固定化的绿脓菌素表现出最特异和线性的响应。相比之下,暴露于铁(II 或 III)10 分钟的 3.0μM 绿脓菌素溶液在亚铁浓度较低(0.45-2.18μM)时显示荧光增加(101-114%),而暴露于所有铁离子浓度(0.45-3.03μM)均会引起猝灭。总之,通过将绿脓菌素固定在溶胶-凝胶玻璃 C 中,提高了其对铁的特异性。
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4713/3114707/75f6276a306d/1754-1611-5-4-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验