Suppr超能文献

细胞质蛋白的轴突运输的机制逻辑。

Mechanistic logic underlying the axonal transport of cytosolic proteins.

机构信息

Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Neuron. 2011 May 12;70(3):441-54. doi: 10.1016/j.neuron.2011.03.022.

Abstract

Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivatable GFP (PAGFP) move with a slow motor-dependent anterograde bias distinct from both vesicular trafficking and diffusion of untagged PAGFP. The overall bias is likely generated by an intricate particle kinetics involving transient assembly and short-range vectorial spurts. In vivo biochemical studies reveal that cytosolic proteins are organized into higher order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supramolecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multiprotein complexes that are directly/indirectly conveyed by motors.

摘要

对突触前功能至关重要的蛋白质是在神经元胞体中合成的,并通过两种轴突运输模式被输送到突触中。虽然膜锚定蛋白通过马达驱动的囊泡在快速轴突运输中传递,但细胞质蛋白通过机制较差的缓慢轴突运输进行运输。我们发现,在培养的轴突中,标记有光活化 GFP(PAGFP)的细胞质蛋白群体以与囊泡运输和未标记 PAGFP 的扩散不同的慢马达依赖的顺行偏倚移动。整体偏倚可能是由涉及短暂组装和短程向量迸发的复杂粒子动力学产生的。体内生化研究表明,细胞质蛋白在富含轴突的部分中组织成更高阶的结构,这些结构在很大程度上与囊泡分离。数据驱动的生物物理模型最好预测了一种情景,即可溶性分子动态组装成可移动的超分子结构。我们提出了一种模型,其中细胞质蛋白通过动态组装成多蛋白复合物来运输,这些复合物直接/间接由马达传递。

相似文献

4
Imaging Diversity in Slow Axonal Transport.慢轴突运输中的成像多样性
Methods Mol Biol. 2022;2431:163-179. doi: 10.1007/978-1-0716-1990-2_8.

引用本文的文献

9
Imaging Diversity in Slow Axonal Transport.慢轴突运输中的成像多样性
Methods Mol Biol. 2022;2431:163-179. doi: 10.1007/978-1-0716-1990-2_8.

本文引用的文献

3
Intracellular transport by active diffusion.通过主动扩散进行的细胞内运输。
Trends Cell Biol. 2009 Sep;19(9):423-7. doi: 10.1016/j.tcb.2009.04.004. Epub 2009 Aug 21.
4
Cytoplasmic diffusion: molecular motors mix it up.细胞质扩散:分子马达使其混合。
J Cell Biol. 2008 Nov 17;183(4):583-7. doi: 10.1083/jcb.200806149. Epub 2008 Nov 10.
6
Cytoskeletal requirements in axonal transport of slow component-b.慢成分b轴突运输中的细胞骨架需求
J Neurosci. 2008 May 14;28(20):5248-56. doi: 10.1523/JNEUROSCI.0309-08.2008.
7
What is slow axonal transport?什么是轴突慢速运输?
Exp Cell Res. 2008 Jun 10;314(10):1981-90. doi: 10.1016/j.yexcr.2008.03.004. Epub 2008 Mar 18.
9
Force fluctuations and polymerization dynamics of intracellular microtubules.细胞内微管的力波动与聚合动力学
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16128-33. doi: 10.1073/pnas.0703094104. Epub 2007 Oct 2.
10
Rapid and intermittent cotransport of slow component-b proteins.慢成分b蛋白的快速间歇性共转运
J Neurosci. 2007 Mar 21;27(12):3131-8. doi: 10.1523/JNEUROSCI.4999-06.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验