Vanstapel F, Waebens M, Van Hecke P, Decanniere C, Stalmans W
Biomedische NMR Eenheid, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium.
Biochem J. 1990 Feb 15;266(1):207-12. doi: 10.1042/bj2660207.
Glycogenolysis was studied in glycogen-rich perfused livers in which glycogen phosphorylase was fully converted into the a form by exposure of the livers to dibutyryl cyclic AMP. We monitored intracellular Pi by 31P n.m.r. Perfusion with Pi-free medium during 30 min caused a progressive decrease of the Pi signal to 50% of its initial value. In contrast, exposure of the livers to KCN and/or 2,4-dinitrophenol resulted in a rapid doubling of the Pi signal. Alterations in the intracellular Pi coincided with proportional changes in the rate of hepatic glycogenolysis (measured as the output of glucose plus lactate). The results indicate that the rate of glycogenolysis catalysed by phosphorylase a depends linearly on the hepatic Pi concentration. Hence the Km of phosphorylase a for its substrate Pi must be considerably higher than the concentrations that occur in the cytosol, even during hypoxia.
在富含糖原的灌注肝脏中研究糖原分解,通过将肝脏暴露于二丁酰环磷酸腺苷,糖原磷酸化酶完全转化为a型。我们用31P核磁共振监测细胞内无机磷酸(Pi)。在无Pi培养基中灌注30分钟导致Pi信号逐渐下降至其初始值的50%。相反,将肝脏暴露于氰化钾和/或2,4-二硝基苯酚会导致Pi信号迅速加倍。细胞内Pi的变化与肝糖原分解速率(以葡萄糖加乳酸的输出量衡量)的成比例变化一致。结果表明,磷酸化酶a催化的糖原分解速率与肝脏Pi浓度呈线性关系。因此,即使在缺氧期间,磷酸化酶a对其底物Pi的米氏常数(Km)也必须远高于细胞质中存在的浓度。