Suppr超能文献

大豆繁殖期和开花后光周期反应的遗传分析和 QTL 检测。

Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean.

机构信息

The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, China.

出版信息

Theor Appl Genet. 2011 Aug;123(3):421-9. doi: 10.1007/s00122-011-1594-8. Epub 2011 May 10.

Abstract

Reproductive period (RP) is an important trait of soybean [Glycine max (L.) Merr.] It is closely related to yield, quality and tolerances to environmental stresses. To investigate the inheritance and photoperiod response of RP in soybean, the F(1), F(2), and F(2:3) populations derived from nine crosses were developed. The inheritance of RP was analyzed through the joint segregation analysis. It was shown that the RP was controlled by one major gene plus polygenes. 181 recombinant inbred lines (RILs) generated from the cross of Xuyong Hongdou × Baohexuan 3 were further used for QTL mapping of RP under normal conditions across 3 environments, using 127 SSR markers. Four QTLs, designated qRP-c-1, qRP-g-1, qRP-m-1 and qRP-m-2, were mapped on C1, G and M linkage groups, respectively. The QTL qRP-c-1 on the linkage group C1 showed stable effect across environments and explained 25.6, 27.5 and 21.4% of the phenotypic variance in Nanjing 2002, Beijing 2003 and Beijing 2004, respectively. Under photoperiod-controlled conditions, qRP-c-1, and two different QTLs designated qRP-l-1 and qRP-o-1, respectively, were mapped on the linkage groups L and O. qRP-o-1 was detected under SD condition and can explained 10.70% of the phenotypic variance. qRP-c-1 and qRP-l-1 were detected under LD condition and for photoperiod sensitivity. The two major-effect QTLs can explain 19.03 and 19.00% of the phenotypic variance, respectively, under LD condition and 16.25 and 14.12%, respectively, for photoperiod sensitivity. Comparative mapping suggested that the two major-effect QTLs, qRP-c-1 and qRP-l-1, might associate with E8 or GmCRY1a and the maturity gene E3 or GmPhyA3, respectively. These results could facilitate our understanding of the inheritance of RP and provide information on marker-assisted breeding for high yield and wide adaptation in soybean.

摘要

生殖期(RP)是大豆[ Glycine max (L.)Merr.]的一个重要特征。它与产量、品质和对环境胁迫的耐受性密切相关。为了研究大豆 RP 的遗传和光周期反应,开发了来自 9 个杂交的 F(1)、F(2)和 F(2:3)群体。通过联合分离分析研究了 RP 的遗传。结果表明,RP 受一个主基因和多基因控制。利用 127 个 SSR 标记,在 3 个环境下,对来自徐勇红豆×宝和轩 3 的杂交后代 181 个重组自交系(RIL)进行了正常条件下 RP 的 QTL 作图。在 C1、G 和 M 连锁群上分别定位到 4 个 QTL,命名为 qRP-c-1、qRP-g-1、qRP-m-1 和 qRP-m-2。在 C1 连锁群上的 QTL qRP-c-1 在不同环境中表现出稳定的效应,分别解释了 2002 年南京、2003 年北京和 2004 年北京的表型方差的 25.6%、27.5%和 21.4%。在光周期控制条件下,分别在 L 和 O 连锁群上定位到 qRP-c-1 和两个不同的 QTL,分别命名为 qRP-l-1 和 qRP-o-1。qRP-o-1 在 SD 条件下被检测到,可以解释表型方差的 10.70%。qRP-c-1 和 qRP-l-1 在 LD 条件下被检测到,用于光周期敏感性。两个主要效应 QTL 分别在 LD 条件下解释了 19.03%和 19.00%的表型方差,在光周期敏感性下分别解释了 16.25%和 14.12%的表型方差。比较作图表明,两个主要效应 QTL qRP-c-1 和 qRP-l-1 可能分别与 E8 或 GmCRY1a 和成熟基因 E3 或 GmPhyA3 相关。这些结果有助于我们理解 RP 的遗传,并为大豆的高产和广泛适应性提供标记辅助选择的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验