Chemistry Group, School of Engineering, Swansea Universit , Singleton Park, Swansea, UK.
J Phys Chem B. 2011 Jun 2;115(21):6885-92. doi: 10.1021/jp202446a. Epub 2011 May 10.
The effect of aggregation on the photophysical properties of three cationic poly{9,9-bis[N,N-(trimethylammonium)hexyl] fluorene-co-l,4-phenylene} polymers with average chain lengths of ∼6, 12, and 100 repeat units (PFP-NR3(6(I),12(Br),100(Br))) has been studied by steady-state and time-resolved fluorescence techniques. Conjugated polyelectrolytes are known to aggregate in solution and for these PFP-NR3 polymers this causes a decrease in the fluorescence quantum yield. The use of acetonitrile as a cosolvent leads to the breakup of aggregates of PFP-NR3 in water; for PFP-NR3(6(I)), this results in an ∼10-fold increase in fluorescence quantum yield, a ca. 2-fold increase in the molar extinction coefficient at 380 nm, and an increase in the emission lifetime, as compared with polymer behavior in water. Fluorescence anisotropy also decreases with increasing aggregation, and this is attributed to increased fluorescence depolarization by interchain energy transfer in aggregate PFP-NR3 clusters. Förster resonance energy transfer along the polymer chain is expected to be very fast, with a calculated FRET rate constant of 7.3 × 10(12) s(-1) and a Förster distance of 2.83 nm (cf. the polymer repeat unit separation of 0.840 nm) for PFP-NR3(100(Br)). The complex polymer excited-state decay kinetics in aggregated PFP-NR3 systems have been successfully modeled in terms of intrachain energy transfer via migration and trapping at interchain aggregate trap sites, with model parameters in good agreement with data from picosecond time-resolved studies and the calculated theoretical Förster energy-transfer rates.
三阳离子聚{9,9-双[N,N-(三甲铵基)己基]芴-co-1,4-亚苯基}聚合物(PFP-NR3(6(I),12(Br),100(Br))的平均链长约为 6、12 和 100 个重复单元,其聚集对光物理性质的影响已通过稳态和时间分辨荧光技术进行了研究。已知共轭聚电解质在溶液中会聚集,对于这些 PFP-NR3 聚合物,这会导致荧光量子产率降低。使用乙腈作为共溶剂会导致 PFP-NR3 在水中的聚集体破裂;对于 PFP-NR3(6(I)),这会导致荧光量子产率增加约 10 倍,在 380nm 处的摩尔消光系数增加约 2 倍,发射寿命增加,与聚合物在水中的行为相比。荧光各向异性也随聚集程度的增加而降低,这归因于在聚集的 PFP-NR3 簇中,通过链间能量转移增加了荧光去极化。预计沿聚合物链的Förster 共振能量转移非常快,对于 PFP-NR3(100(Br)),计算得到的 FRET 速率常数为 7.3×10(12)s(-1),Förster 距离为 2.83nm(相对于聚合物重复单元的分离 0.840nm)。在聚集的 PFP-NR3 系统中,复杂的聚合物激发态衰减动力学已成功地通过链内能量转移来建模,该能量转移通过在链间聚集陷阱位置的迁移和捕获来进行,模型参数与皮秒时间分辨研究和计算的理论 Förster 能量转移速率的数据非常吻合。