Xu Jian-Xin, Yan Rui
Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
IEEE Trans Neural Netw. 2011 Jun;22(6):893-905. doi: 10.1109/TNN.2011.2132143. Epub 2011 May 10.
Using a constructive function approximation network, an adaptive learning control (ALC) approach is proposed for finite interval tracking problems. The constructive function approximation network consists of a set of bases, and the number of bases can evolve when learning repeats. The nature of the basis allows the continuous adaptive learning of parameters when the network undergoes any structural changes, and consequently offers the flexibility in tuning the network structure. The expandability of the bases guarantees precision of the function approximation and avoids the trial-and-error procedure in structure selection for any fixed structure network. Two classes of unknown nonlinear functions, namely, either global L(2) or local L(2) with a known bounding function, are taken into consideration. Using the Lyapunov method, the existence of solution and the convergence property of the proposed ALC system are discussed in a rigorous manner. By virtue of the celebrated orthonormal and multiresolution properties, wavelet network is used as the universal function approximator, with the weights tuned by the proposed adaptive learning mechanism.
针对有限区间跟踪问题,提出了一种基于构造函数逼近网络的自适应学习控制(ALC)方法。构造函数逼近网络由一组基函数组成,且基函数的数量会在学习重复进行时发生变化。基函数的特性使得当网络发生任何结构变化时,参数能够持续自适应学习,从而在调整网络结构方面提供了灵活性。基函数的可扩展性保证了函数逼近的精度,避免了在任何固定结构网络的结构选择中进行反复试验的过程。考虑了两类未知非线性函数,即具有已知界函数的全局L(2)函数或局部L(2)函数。利用李雅普诺夫方法,严格讨论了所提出的ALC系统解的存在性和收敛性。借助著名的正交和多分辨率特性,将小波网络用作通用函数逼近器,其权重由所提出的自适应学习机制进行调整。