Suppr超能文献

电子处方系统能否检测出更有可能犯严重处方错误的医生?

Can an electronic prescribing system detect doctors who are more likely to make a serious prescribing error?

机构信息

College of Medical and Dental Sciences, University of Birmingham, UK.

出版信息

J R Soc Med. 2011 May;104(5):208-18. doi: 10.1258/jrsm.2011.110061.

Abstract

OBJECTIVES

We aimed to assess whether routine data produced by an electronic prescribing system might be useful in identifying doctors at higher risk of making a serious prescribing error.

DESIGN

Retrospective analysis of prescribing by junior doctors over 12 months using an electronic prescribing information and communication system. The system issues a graded series of prescribing alerts (low-level, intermediate, and high-level), and warnings and prompts to respond to abnormal test results. These may be overridden or heeded, except for high-level prescribing alerts, which are indicative of a potentially serious error and impose a 'hard stop'.

SETTING

A large teaching hospital.

PARTICIPANTS

All junior doctors in the study setting.

MAIN OUTCOME MEASURES

Rates of prescribing alerts and laboratory warnings and doctors' responses.

RESULTS

Altogether 848,678 completed prescriptions issued by 381 doctors (median 1538 prescriptions per doctor, interquartile range [IQR] 328-3275) were analysed. We identified 895,029 low-level alerts (median 1033 per 1000 prescriptions per doctor, IQR 903-1205) with a median of 34% (IQR 31-39%) heeded; 172,434 intermediate alerts (median 196 per 1000 prescriptions per doctor, IQR 159-266), with a median of 23% (IQR 16-30%) heeded; and 11,940 high-level 'hard stop' alerts. Doctors vary greatly in the extent to which they trigger and respond to alerts of different types. The rate of high-level alerts showed weak correlation with the rate of intermediate prescribing alerts (correlation coefficient, r = 0.40, P = <0.001); very weak correlation with low-level alerts (r = 0.12, P = 0.019); and showed weak (and sometimes negative) correlation with propensity to heed test-related warnings or alarms. The degree of correlation between generation of intermediate and high-level alerts is insufficient to identify doctors at high risk of making serious errors.

CONCLUSIONS

Routine data from an electronic prescribing system should not be used to identify doctors who are at risk of making serious errors. Careful evaluation of the kinds of quality assurance questions for which routine data are suitable will be increasingly valuable.

摘要

目的

我们旨在评估电子处方系统生成的常规数据是否可用于识别发生严重处方错误风险较高的医生。

设计

使用电子处方信息和通信系统对 12 个月内的初级医生处方进行回顾性分析。该系统会发出一系列分级处方警报(低级别、中级和高级),以及针对异常检验结果的警告和提示。这些警报和提示可以被忽略或遵循,除了高级处方警报,它表示可能存在严重错误,并强制“硬停止”。

设置

一家大型教学医院。

参与者

研究环境中的所有初级医生。

主要观察指标

处方警报和实验室警告的发生率以及医生的反应。

结果

共分析了 381 名医生开具的 848678 张完成处方(每位医生的中位数为 1538 张处方,四分位距[IQR]为 328-3275)。我们确定了 895029 张低级别警报(中位数为每 1000 张处方 1033 张,IQR 为 903-1205),其中 34%(IQR 为 31-39%)被遵循;172434 张中级警报(中位数为每 1000 张处方 196 张,IQR 为 159-266),其中 23%(IQR 为 16-30%)被遵循;以及 11940 张高级“硬停止”警报。不同类型的警报触发和响应程度在医生之间差异很大。高级警报的发生率与中级处方警报的发生率呈弱相关(相关系数 r = 0.40,P <0.001);与低级警报的相关性非常弱(r = 0.12,P = 0.019);与遵循与测试相关的警告或警报的倾向呈弱(有时为负)相关。中级和高级警报的生成之间的相关程度不足以识别发生严重错误的高风险医生。

结论

电子处方系统的常规数据不应用于识别发生严重错误的风险较高的医生。对于哪些质量保证问题适合使用常规数据,进行仔细评估将变得越来越有价值。

相似文献

引用本文的文献

7
Prescribing errors in hospital practice.医院实践中的处方错误。
Br J Clin Pharmacol. 2012 Oct;74(4):668-75. doi: 10.1111/j.1365-2125.2012.04313.x.

本文引用的文献

2
Overrides of medication alerts in ambulatory care.门诊护理中药物警报的覆盖情况。
Arch Intern Med. 2009 Feb 9;169(3):305-11. doi: 10.1001/archinternmed.2008.551.
4
Overriding of drug safety alerts in computerized physician order entry.计算机化医生医嘱录入系统中药物安全警报的忽略
J Am Med Inform Assoc. 2006 Mar-Apr;13(2):138-47. doi: 10.1197/jamia.M1809. Epub 2005 Dec 15.
6
Public reporting on quality in the United States and the United Kingdom.美国和英国关于质量的公开报告。
Health Aff (Millwood). 2003 May-Jun;22(3):134-48. doi: 10.1377/hlthaff.22.3.134.
10
A sixteen-factor personality test for predicting automobile driving accidents of young drivers.
Accid Anal Prev. 1989 Oct;21(5):413-8. doi: 10.1016/0001-4575(89)90001-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验