Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109, USA.
Stat Med. 2011 May 30;30(12):1339-50. doi: 10.1002/sim.4163. Epub 2011 Jan 11.
Most multiple imputation (MI) methods for censored survival data either ignore patient characteristics when imputing a likely event time, or place quite restrictive modeling assumptions on the survival distributions used for imputation. In this research, we propose a robust MI approach that directly imputes restricted lifetimes over the study period based on a model of the mean restricted life as a linear function of covariates. This method has the advantages of retaining patient characteristics when making imputation choices through the restricted mean parameters and does not make assumptions on the shapes of hazards or survival functions. Simulation results show that our method outperforms its closest competitor for modeling restricted mean lifetimes in terms of bias and efficiency in both independent censoring and dependent censoring scenarios. Survival estimates of restricted lifetime model parameters and marginal survival estimates regain much of the precision lost due to censoring. The proposed method is also much less subject to dependent censoring bias captured by covariates in the restricted mean model. This particular feature is observed in a full statistical analysis conducted in the context of the International Breast Cancer Study Group Ludwig Trial V using the proposed methodology.
大多数针对删失生存数据的多重填补(MI)方法要么在填补可能的事件时间时忽略患者特征,要么对用于填补的生存分布施加相当严格的建模假设。在这项研究中,我们提出了一种稳健的 MI 方法,该方法直接根据受限平均寿命作为协变量的线性函数的模型,对研究期间的受限寿命进行直接填补。该方法通过受限平均参数在进行填补选择时保留患者特征,并且不对危险函数或生存函数的形状做出假设。模拟结果表明,在独立删失和依赖删失情况下,我们的方法在对受限平均寿命模型参数的生存估计和边缘生存估计进行建模方面,在偏差和效率方面均优于其最接近的竞争对手。由于删失而导致的受限寿命模型参数的生存估计和边缘生存估计的精度损失,在很大程度上得以恢复。所提出的方法也不太容易受到受限平均模型中协变量捕获的依赖删失偏差的影响。在国际乳腺癌研究组 Ludwig 试验 V 的完整统计分析中,使用所提出的方法观察到了这一特定特征。