Department of Neurosurgery and Physiology, New York University Langone Medical Center, New York, New York 10016, USA.
J Neurosci. 2011 May 11;31(19):6997-7004. doi: 10.1523/JNEUROSCI.6088-10.2011.
Numerous studies have documented the mechanisms that regulate intracellular pH (pH(i)) in hippocampal neurons in response to an acid load. Here, we studied the response of pH(i) to depolarization in cultured hippocampal neurons. Elevation of external K+ (6-30 mm) elicited an acid transient followed by a large net alkaline shift. Similar responses were observed in acutely dissociated hippocampal neurons. In Ca2+ -free media, the acid response was curtailed and the alkaline shift enhanced. DIDS blocked the alkaline response and revealed a prolonged underlying acidification that was highly dependent on Ca2+ entry. Similar alkaline responses could be elicited by AMPA, indicating that this rise in pH(i) was a depolarization-induced alkalinization (DIA). The DIA was found to consist of Cl- -dependent and Cl- -independent components, each accounting for approximately one-half of the peak amplitude. The Cl- -independent component was postulated to arise from operation of the electrogenic Na+ -HCO3- cotransporter NBCe1. Quantitative PCR and single-cell multiplex reverse transcription-PCR demonstrated message for NBCe1 in our hippocampal neurons. In neurons cultured from Slc4a4 knock-out (KO) mice, the DIA was reduced by approximately one-half compared with wild type, suggesting that NBCe1 was responsible for the Cl- -independent DIA. In Slc4a4 KO neurons, the remaining DIA was virtually abolished in Cl- -free media. These data demonstrate that DIA of hippocampal neurons occurs via NBCe1, and a parallel DIDS-sensitive, Cl- -dependent mechanism. Our results indicate that, by activating net acid extrusion in response to depolarization, hippocampal neurons can preempt a large, prolonged, Ca2+ -dependent acidosis.
大量研究已经记录了在应对酸负荷时调节海马神经元细胞内 pH 值(pH(i))的机制。在这里,我们研究了 pH(i)在培养的海马神经元中对去极化的反应。升高细胞外 K+(6-30mm)引发了一个酸性瞬变,随后是一个大的净碱性偏移。在急性分离的海马神经元中也观察到了类似的反应。在无 Ca2+ 的培养基中,酸响应被抑制,碱性偏移增强。DIDS 阻断了碱性反应,并揭示了一个依赖 Ca2+ 内流的延长的基础酸化。类似的碱性反应也可以被 AMPA 引发,这表明 pH(i)的这种升高是一种去极化诱导的碱化(DIA)。DIA 被发现由 Cl- 依赖性和 Cl- 非依赖性成分组成,每个成分约占峰值幅度的一半。Cl- 非依赖性成分被假设来自电致性 Na+ -HCO3-共转运体 NBCe1 的运作。定量 PCR 和单细胞多重逆转录-PCR 显示我们的海马神经元中有 NBCe1 的 mRNA。在 Slc4a4 敲除(KO)小鼠培养的神经元中,与野生型相比,DIA 减少了约一半,这表明 NBCe1 负责 Cl- 非依赖性 DIA。在 Slc4a4 KO 神经元中,在无 Cl- 的培养基中,剩余的 DIA 几乎被消除。这些数据表明,海马神经元的 DIA 通过 NBCe1 和一种平行的 DIDS 敏感、Cl- 依赖性机制发生。我们的结果表明,通过激活去极化时的净酸外排,海马神经元可以预防大的、持续的、Ca2+ 依赖性酸中毒。