Pain Management Research Institute and Kolling Institute and Brain and Mind Research Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.
J Neurosci. 2011 May 11;31(19):7122-30. doi: 10.1523/JNEUROSCI.5999-10.2011.
Chronic morphine treatment produces behavioral and cellular opioid tolerance that has been proposed to be caused by attenuated μ-opioid receptor (MOR) recovery from desensitization (resensitization). The process of MOR resensitization is thought to require βarrestin-2 (βarr-2)-dependent trafficking of desensitized receptors to endosomal compartments, followed by recycling of resensitized receptors back to the plasma membrane. However, there is little direct evidence for this, particularly in native neurons. This study used whole-cell patch-clamp recording in locus ceruleus (LC) neurons from wild-type (w.t.) and βarr-2 knock-out (k.o.) mice to examine whether βarr-2/dynamin-dependent trafficking is required for MOR resensitization in neurons from opioid-naive and morphine-treated mice. Surprisingly, recovery of MOR from acute desensitization in LC neurons does not require βarr-2- or dynamin-dependent trafficking. To the contrary, MOR resensitization was accelerated by disruption of either βarr-2 or dynamin function. Chronic morphine treatment caused cellular MOR tolerance and concurrently impaired MOR resensitization in neurons from w.t. mice, as expected from previous studies, but neither occurred in neurons from βarr-2 k.o. mice. Moreover, the impairment of MOR resensitization caused by chronic morphine was reversed in w.t. neurons when G-protein-coupled receptor kinase-2 (GRK2) or dynamin function was disrupted. Together, these results establish that βarr-2/dynamin-dependent receptor regulation is not required for MOR resensitization in LC neurons. Furthermore, chronic morphine treatment modifies GRK2-βarr-2-dynamin-dependent MOR trafficking to impair receptor resensitization, thereby contributing to opioid tolerance in LC neurons by reducing the number of functional receptors on the surface membrane.
慢性吗啡处理会产生行为和细胞阿片类药物耐受,据推测这是由于μ-阿片受体(MOR)脱敏后恢复(再敏化)减弱所致。MOR 再敏化的过程被认为需要β-arrestin-2(βarr-2)依赖性将脱敏受体转运到内体隔室,然后将再敏化的受体再循环回质膜。然而,这方面的直接证据很少,特别是在原代神经元中。本研究使用野生型(w.t.)和βarr-2敲除(k.o.)小鼠蓝斑(LC)神经元的全细胞膜片钳记录,以研究βarr-2/动力蛋白依赖性转运是否是阿片类药物未处理和吗啡处理的小鼠神经元中 MOR 再敏化所必需的。令人惊讶的是,LC 神经元中 MOR 从急性脱敏中的恢复不需要βarr-2 或动力蛋白依赖性转运。相反,破坏βarr-2 或动力蛋白功能会加速 MOR 的再敏化。慢性吗啡处理会导致 LC 神经元中的细胞 MOR 耐受,并同时损害 w.t. 小鼠神经元中的 MOR 再敏化,这与之前的研究一致,但在βarr-2 k.o. 小鼠的神经元中则不会发生。此外,当 G 蛋白偶联受体激酶-2(GRK2)或动力蛋白功能被破坏时,w.t. 神经元中慢性吗啡引起的 MOR 再敏化受损得到逆转。总之,这些结果表明,βarr-2/动力蛋白依赖性受体调节对于 LC 神经元中的 MOR 再敏化不是必需的。此外,慢性吗啡处理改变了 GRK2-βarr-2-动力蛋白依赖性 MOR 转运,从而损害受体再敏化,从而通过减少质膜上功能性受体的数量来导致 LC 神经元中的阿片类药物耐受。